admin管理员组

文章数量:1531694

 我们的口号是:十年生死两茫茫,写代码,到天亮!!!

 狂神说java视频:【狂神说Java】JVM快速入门篇_哔哩哔哩_bilibili

狂神笔记交流:首页-KuangStudy

面试常见

  1. 请你谈谈你对JVM的理解?
  2. java8虚拟机和之前的变化更新?
  3. 什么是OOM,什么是栈溢出StackOverFlowError? 怎么分析?
  4. JVM的常用调优参数有哪些?
  5. 内存快照如何抓取?怎么分析Dump文件?
  6. 谈谈JVM中,类加载器你的认识?

 1、JVM的位置

2、JVM的体系结构

 JVM调优99%都是在方法区和堆,大部分时间调堆

 3、类加载器

  • 作用:加载Class文件——如果new Student();(具体实例在堆里,引用变量名放栈里) 。
  • 类是模板,对象是具体的,通过new来实例化对象。car1,car2,car3,名字在栈里面,真正的实例,具体的数据在堆里面,栈只是引用地址。
  • 先来看看一个类加载到 JVM 的一个基本结构:

 new 出来三个对象,三个对象是不同的,但他们的模板都是相同的

public class Car {
    public static void main(String[] args) {
        //类是模板,对象是具体的
        Car car1 = new Car();
        Car car2 = new Car();
        Car car3 = new Car();

        System.out.println(car1.hashCode());//460141958
        System.out.println(car2.hashCode());//1163157884
        System.out.println(car3.hashCode());//1956725890

        Class<? extends Car> aClass1 = car1.getClass();
        Class<? extends Car> aClass2 = car1.getClass();
        Class<? extends Car> aClass3 = car1.getClass();
        System.out.println(aClass1.hashCode());//685325104
        System.out.println(aClass2.hashCode());//685325104
        System.out.println(aClass3.hashCode());//685325104


        ClassLoader classLoader = aClass.getClassLoader();//获取这个模板的类加载器
        System.out.println(classLoader);//输出当前类加载器
        System.out.println(classLoader.getParent());//输出当前类加载器的爸爸
        System.out.println(classLoader.getParent().getParent());//的爷爷
        /*结果
          sun.misc.Launcher$AppClassLoader@18b4aac2
          sun.misc.Launcher$ExtClassLoader@1540e19d
          null  1.不存在,2.java程序获取不到
          */
    }
}

类加载器的分类

  1. Bootstrap ClassLoader 启动类加载器  (rt.jar)
  2. Extention ClassLoader 标准扩展类加载器 (/jre/lib/ext)
  3. Application ClassLoader 应用类加载器  (classloader)
  4. User ClassLoader 用户自定义类加载器

双亲委派机制执行流程:

  1. 类加载器收到类加载的请求
  2. 将这个请求向上委托给父类加载器去完成,一直向上委托,直到启动类加载,APP-->EXC-->BOOT(最终执行)
  3. 启动加载器检查是否能够加载当前这个类,能加载就结束,使用当前的加载器,否则,抛出异常,告知子加载器进行加载BOOT(最终执行)-->EXC-->APP-->USER

双亲委派机制的作用: 

  • 避免类的重复加载。通过委托去向上面问一问,加载过了,就不用再加载一遍。保证数据安全。
  • 保护程序安全,防止核心API被随意篡改。通过委托方式,不会去篡改核心.class,即使篡改也不会去加载,即使加载也不会是同一个.class对象了。不同的加载器加载同一个.class也不是同一个Class对象。这样保证了Class执行安全。
    • 自定义类:java.lang.String (没用)

比如:如果有人想替换系统级别的类:String.java。篡改它的实现,在这种机制下这些系统的类已经被Bootstrap classLoader加载过了(为什么?因为当一个类需要加载的时候,最先去尝试加载的就是BootstrapClassLoader),所以其他类加载器并没有机会再去加载,从一定程度上防止了危险代码的植入。

package java.lang;

public class String {
   
    public String toString() {
        return "Hello";
    }
    public static void main(String[] args) {
        String s = new String();
        System.out.println(s.getClass());
        s.toString();
    }
    /*
    1.类加载器收到类加载的请求
    2.将这个请求向上委托给父类加载器去完成,一直向上委托,知道启动类加载
    3.启动加载器检查是否能够加载当前这个类,能加载就结束,使用当前的加载器,否则,抛出异常,适知子加载器进行加载
    4.重复步骤3
     */
}

这是因为,在运行一个类之前,首先会在应用程序加载器(APP)中找,如果APP中有这个类,继续向上在扩展类加载器EXC中找,然后再向上,在启动类( 根 )加载器BOOT中找。如果在BOOT中有这个类的话,最终执行的就是根加载器中的。如果BOOT中没有的话,就会倒找往回找。 

4、沙箱安全机制

Java安全模型的核心就是Java沙箱(sandbox),什么是沙箱?沙箱是一个限制程序运行的环境。沙箱机制就是将Java代码限定在虚拟机(JVM)特定的运行范围中,并且严格限制代码对本地系统资源访问,通过这样的措施来保证对代码的有效隔离,防止对本地系统造成破坏。沙箱主要限制系统资源访问,那系统资源包括什么?CPU、内存、文件系统、网络。不同级别的沙箱对这些资源访问的限制也可以不一样。

组成沙箱的基本组件:

  • 字节码校验器(bytecode verifier)︰确保Java类文件遵循lava语言规范。这样可以帮助lava程序实现内存保护。但并不是所有的类文件都会经过字节码校验,比如核心类。

  • 类装载器(class loader) :其中类装载器在3个方面对Java沙箱起作用:

    。它防止恶意代码去干涉善意的代码;
    。它守护了被信任的类库边界;
    。它将代码归入保护域,确定了代码可以进行哪些操作。

​ 虚拟机为不同的类加载器载入的类提供不同的命名空间,命名空间由一系列唯一的名称组成,每一个被装载的类将有一个名字,这个命名空间是由Java虚拟机为每一个类装载器维护的,它们互相之间甚至不可见。

5、Native关键字

 public static void main(String[] args) { 
            new Thread(()->{ },"your thread name").start(); 
 }

查看start方法源代码: 

public synchronized void start() {
        if (threadStatus != 0)
            throw new IllegalThreadStateException();
        group.add(this);
        boolean started = false;
        try {
            start0();    // 调用了一个start0方法
            started = true;
        } finally {
            try {
                if (!started) {
                    group.threadStartFailed(this);
                }
            } catch (Throwable ignore) {
            }
        }
    }
    // 这个Thread是一个类,这个方法定义在这里是不是很诡异!看这个关键字native;
    private native void start0();
  • 凡是带了native关键字的,说明 java的作用范围达不到,去调用底层C语言的库!

  • JNI:Java Native Interface(Java本地方法接口);作用:扩展java的使用,融合不同的编程语言为java所用!

  • 凡是带了native关键字的方法就会进入本地方法栈;

  • Native Method Stack 本地方法栈,它的具体做法是Native Method Stack登记native方法,在(Execution Engine)执行引擎执行的时候加载Native Libraies。

  • 本地接口的作用是融合不同的编程语言为Java所用,它的初衷是融合C/C++程序,Java在诞生的时候是C/C++横行的时候,想要立足,必须有调用C、C++的程序,于是就在内存中专门开辟了一块区域处理标记为native的代码,它的具体做法是 在 Native Method Stack 中登记native方法,在 ( ExecutionEngine ) 执行引擎执行的时候加载Native Libraies。

  • 目前该方法使用的越来越少了,除非是与硬件有关的应用,比如通过Java程序驱动打印机或者Java系统管理生产设备,在企业级应用中已经比较少见。因为现在的异构领域间通信很发达,比如可以使用Socket通信,也可以使用Web Service等等,不多做介绍!

6、PC寄存器

程序计数器:Program Counter Register

  • 每个线程都有一个程序计数器,是线程私有的,就是一个指针,指向方法区中的方法字节码(用来存储指向像一条指令的地址,也即将要执行的指令代码),在执行引擎读取下一条指令,是一个非常小的内存空间,几乎可以忽略不计。

7、方法区

Method Area 方法区

  • 方法区是被所有线程共享,所有字段和方法字节码,以及一些特殊方法,如构造函数,接口代码也在此定义,简单说,所有定义的方法的信息都保存在该区域,此区域属于共享区间;

  • 静态变量、常量、类信息(构造方法、接口定义)、运行时的常量池存在方法区中,但是实例变量存在堆内存中,和方法区无关。

  • static ,final ,Class ,常量池~

8、栈

  • 栈:后进先出 / 先进后出

  • 队列:先进先出(FIFO : First Input First Output)

栈管理程序运行

  • 存储一些基本类型的值、对象的引用、方法等。

  • 栈的优势是,存取速度比堆要快,仅次于寄存器,栈数据可以共享。

思考:为什么main方法最后执行!为什么一个test() 方法执行完了,才会继续走main方法!

 喝多了吐就是栈,吃多了拉就是队列

说明:

  • 1、栈也叫栈内存,主管Java程序的运行,是在线程创建时创建,它的生命期是跟随线程的生命期,线程结束栈内存也就释放。

  • 2、对于栈来说不存在垃圾回收问题,只要线程一旦结束,该栈就Over,生命周期和线程一致,是线程私有的。

  • 3、方法自己调自己就会导致栈溢出(递归死循环测试)。Exception StackOverflowError

栈里面会放什么东西呢?

  • 8大基本类型 + 对象的引用 + 实例的方法

栈运行原理

  • Java栈的组成元素——栈帧。

  • 栈帧是一种用于帮助虚拟机执行方法调用与方法执行的数据结构。他是独立于线程的,一个线程有自己的一个栈帧。封装了方法的局部变量表、动态链接信息、方法的返回地址以及操作数栈等信息。

  • 第一个方法从调用开始到执行完成,就对应着一个栈帧在虚拟机栈中从入栈到出栈的过程。

当一个方法A被调用时就产生了一个栈帧F1,并被压入到栈中,A方法又调用了B方法,于是产生了栈帧F2也被压入栈中,B方法又调用了C方法,于是产生栈帧F3也被压入栈中 执行完毕后,先弹出F3, 然后弹出F2,在弹出F1……..

  • 遵循 “先进后出” / “后进先出” 的原则。

  • 栈满了,抛出异常:stackOverflowError

 

  • 对象实例化的过程。new 的名字放栈,对象放堆

9、堆 

三种JVM

  • Sun公司HotSpot java Hotspot™64-Bit server vw (build 25.181-b13,mixed mode)
  • BEA JRockit
  • IBM 39 VM
  • 我们学习都是:Hotspot

Java7之前

  • Heap 堆,一个JVM实例只存在一个堆内存,堆内存的大小是可以调节的。
  • 类加载器读取了类文件后,需要把类,方法,常变量放到堆内存中,保存所有引用类型的真实对象,以方便执行器执行。
  • 堆内存分为三部分:

    • 新生区 Young Generation Space Young/New(伊甸园区)
    • 养老区 Tenure generation space Old/Tenure

    • 永久区 Permanent Space Perm

  • 堆内存逻辑上分为三部分:新生,养老,永久(元空间 : JDK8 以后名称)。

  • GC垃圾回收主要是在新生区和养老区,又分为轻GC 和 重GC,如果内存不够,或者存在死循环,就会导致

  • 在JDK8以后,永久存储区改了个名字(元空间)。

 10、堆中的新生区、养老区

  • 新生区是类诞生,成长,消亡的区域,一个类在这里产生,应用,最后被垃圾回收器收集,结束生命。

  • 新生区又分为两部分:伊甸区(Eden Space)和幸存者区(Survivor Space),所有的类都是在伊甸区被new出来的,幸存区有两个:0区 和 1区,当伊甸园的空间用完时,程序又需要创建对象,JVM的垃圾回收器将对伊甸园区进行垃圾回收(Minor GC)。将伊甸园中的剩余对象移动到幸存0区,若幸存0区也满了,再对该区进行垃圾回收,然后移动到1区,那如果1区也满了呢?(这里幸存0区和1区是一个互相交替的过程)再移动到养老区,若养老区也满了,那么这个时候将产生MajorGC(Full GC),进行养老区的内存清理,若养老区执行了Full GC后发现依然无法进行对象的保存,就会产生OOM异常 “OutOfMemoryError ”。如果出现 java.lang.OutOfMemoryError:java heap space异常,说明Java虚拟机的堆内存不够,原因如下:

    • 1、Java虚拟机的堆内存设置不够,可以通过参数 -Xms(初始值大小),-Xmx(最大大小)来调整。

    • 2、代码中创建了大量大对象,并且长时间不能被垃圾收集器收集(存在被引用)或者死循环。

11、永久区(Perm)

  • 永久存储区是一个常驻内存区域,用于存放JDK自身所携带的Class,接口(Interface)的元数据,也就是说它存储的是运行环境必须的类信息,被装载进此区域的数据是不会被垃圾回收器回收掉的,关闭JVM才会释放此区域所占用的内存。
  • 如果出现 java.lang.OutOfMemoryError:PermGen space,说明是 Java虚拟机对永久代Perm内存设置不够。一般出现这种情况,都是程序启动需要加载大量的第三方jar包,
  • 例如:在一个Tomcat下部署了太多的应用。或者大量动态反射生成的类不断被加载,最终导致Perm区被占满。

注意:

  • JDK1.6之前: 有永久代,常量池1.6在方法区;
  • JDK1.7: 有永久代,但是已经逐步 “去永久代”,常量池1.7在堆;
  • JDK1.8及之后:无永久代,常量池1.8在元空间。

熟悉三区结构后方可学习JVM垃圾回收机制

  • 实际而言,方法区(Method Area)和堆一样,是各个线程共享的内存区域,它用于存储虚拟机加载的:类信息+普通常量+静态常量+编译器编译后的代码,虽然JVM规范将方法区描述为堆的一个逻辑部分,但它却还有一个别名,叫做Non-Heap(非堆),目的就是要和堆分开

  • 对于HotSpot虚拟机,很多开发者习惯将方法区称之为 “永久代(Parmanent Gen)”,但严格本质上说两者不同,或者说使用永久代实现方法区而已,永久代是方法区(相当于是一个接口interface)的一个实现,Jdk1.7的版本中,已经将原本放在永久代的字符串常量池移走。

  • 常量池(Constant Pool)是方法区的一部分,Class文件除了有类的版本,字段,方法,接口描述信息外,还有一项信息就是常量池,这部分内容将在类加载后进入方法区的运行时常量池中存放!

 12、堆内存调优

  • ==-Xms==:设置初始分配大小,默认为物理内存的 “1/64”。
  • ==-Xmx==:最大分配内存,默认为物理内存的 “1/4”。
  • ==-XX:+PrintGCDetails==:输出详细的GC处理日志。
public class Demo01 {
    public static void main(String[] args) {
        // 返回虚拟机试图使用的最大内存
        long max = Runtime.getRuntime().maxMemory();    // 字节:1024*1024
        // 返回jvm的总内存
        long total = Runtime.getRuntime().totalMemory();
        System.out.println("max=" + max + "字节\t" + (max/(double)1024/1024) + "MB");
        System.out.println("total=" + total + "字节\t" + (total/(double)1024/1024) + "MB");
        // 默认情况下:分配的总内存是电脑内存的1/4,初始化的内存是电脑的1/64
    }
}
  • IDEA中进行VM调优参数设置,然后启动。

输入: -Xms1024m -Xmx1024m -XX:+PrintGCDetails 

  • VM参数调优:把初始内存,和总内存都调为 1024M,运行,查看结果!

再次证明:元空间并不在虚拟机中,而是使用本地内存。

测试二:


public class Demo02 {
    public static void main(String[] args) {
        String str = "suneiLY";
        while (true) {
            str += str + new Random().nextInt(88888888)
                    + new Random().nextInt(999999999);
        }
    }
}

vm参数: -Xms8m -Xmx8m -XX:+PrintGCDetails

 结果:

  • 这是一个young 区域撑爆的JAVA 内存日志,其中 PSYoungGen 表示 youngGen分区的变化1536k 表示 GC 之前的大小。

  • 488k 表示GC 之后的大小。

  • 整个Young区域的大小从 1536K 到 672K , young代的总大小为 7680K。

  • user – 总计本次 GC 总线程所占用的总 CPU 时间。

  • sys – OS 调用 or 等待系统时间。

  • real – 应用暂停时间。

  • 如果GC 线程是 Serial Garbage Collector 串行搜集器的方式的话(只有一条GC线程,), real time 等于user 和 system 时间之和。

  • 通过日志发现Young的区域到最后 GC 之前后都是0,old 区域 无法释放,最后报堆溢出错误。

在一个项目中,突然出现了OOM故障,那么该如何排除~~研究为什么出错~

  • ·能够看到代码第几行出错:内存快照分析工具,MAT,Jprofiler
  • .Dubug,一行行分析代码!

MAT,Jprofiler作用

  • ·分析Dump内存文件,快速定位内存泄露;·获得堆中的数据
  • ·获得大的对象~

安装及教程Jprofiler看另一篇博客

13、GC 四大算法

1.引用记数法

  • 每个对象有一个引用计数器,当对象被引用一次则计数器加1,当对象引用失效一次,则计数器减1,对于计数器为0的对象意味着是垃圾对象,可以被GC回收。

  • 目前虚拟机基本都是采用可达性算法,从GC Roots 作为起点开始搜索,那么整个连通图中的对象边都是活对象,对于GC Roots 无法到达的对象变成了垃圾回收对象,随时可被GC回收。

2.复制算法

年轻代中使用的是Minor GC,采用的就是复制算法(Copying)。一句话:谁空谁是to

  • Minor GC 会把Eden中的所有活的对象都移到Survivor区域中,如果Survivor区中放不下,那么剩下的活的对象就被移动到Old generation中,也就是说,一旦收集后,Eden就是变成空的了

  • 当对象在Eden(包括一个Survivor区域,这里假设是From区域)出生后,在经过一次Minor GC后,如果对象还存活,并且能够被另外一块Survivor区域所容纳 (上面已经假设为from区域,这里应为to区域,即to区域有足够的内存空间来存储Eden 和 From 区域中存活的对象),则使用复制算法将这些仍然还活着的对象复制到另外一块Survivor区域(即 to 区域)中,然后清理所使用过的Eden 以及Survivor 区域(即form区域),并且将这些对象的年龄设置为1,以后对象在Survivor区,每熬过一次MinorGC,就将这个对象的年龄 + 1,当这个对象的年龄达到某一个值的时候(默认是15岁,通过- XX:MaxTenuringThreshold 设定参数)这些对象就会成为老年代。

-XX:MaxTenuringThreshold=15  设置对象在幸存区中存活的次数才能进入要老区(默认15次)

原理解释:

HotSpot JVM 把年轻代分为了三部分:一个 Eden 区 和 2 个Survivor区(from区 和 to区)。默认比例为 8:1:1,一般情况下,新创建的对象都会被分配到Eden区(一些大对象特殊处理),这些对象经过第一次Minor GC后,如果仍然存活,将会被移到Survivor区,对象在Survivor中每熬过一次Minor GC , 年龄就会增加1岁,当它的年龄增加到一定程度时,就会被移动到年老代中,因为年轻代中的对象基本上 都是朝生夕死,所以在年轻代的垃圾回收算法使用的是复制算法!复制算法的思想就是将内存分为两块,每次只用其中一块,当这一块内存用完,就将还活着的对象复制到另外一块上面。复制算法不会产 生内存碎片! 

  • 在GC开始的时候,对象只会在Eden区和名为 “From” 的Survivor区,Survivor区“TO” 是空的,紧接着进行GC,Eden区中所有存活的对象都会被复制到 “To”,而在 “From” 区中,仍存活的对象会更具他们的年龄值来决定去向。
  • 年龄达到一定值的对象会被移动到老年代中,没有达到阈值的对象会被复制到 “To 区域”,经过这次GC后,Eden区和From区已经被清空,这个时候, “From” 和 “To” 会交换他们的角色, 也就是新的 “To” 就是GC前的“From” , 新的 “From” 就是上次GC前的 “To”。
  • 不管怎样,都会保证名为To 的Survicor区域是空的。 Minor GC会一直重复这样的过程。直到 To 区 被填满 ,“To” 区被填满之后,会将所有的对象移动到老年代中。

  • 因为Eden区对象一般存活率较低,一般的,使用两块10%的内存作为空闲和活动区域,而另外80%的内存,则是用来给新建对象分配内存的。一旦发生GC,将10%的from活动区间与另外80%中存活的Eden 对象转移到10%的to空闲区域,接下来,将之前的90%的内存,全部释放,以此类推;

  • 好处:没有内存碎片;坏处:浪费内存空间。

复制算法它的缺点也是相当明显的。

  • 1、他浪费了一半的内存,这太要命了。
  • 2、如果对象的存活率很高,我们可以极端一点,假设是100%存活,那么我们需要将所有对象都复制一遍,并将所有引用地址重置一遍。复制这一工作所花费的时间,在对象存活率达到一定程度时,将会变的不可忽视,所以从以上描述不难看出。复制算法要想使用,最起码对象的存活率要非常低才行,而且 最重要的是,我们必须要克服50%的内存浪费。

3.标记清除

  • 回收时,对需要存活的对象进行标记;回收不是绿色的对象。

  • 当堆中的有效内存空间被耗尽的时候,就会停止整个程序(也被称为stop the world),然后进行两项工作,第一项则是标记,第二项则是清除。

  • 标记:从引用根节点开始标记所有被引用的对象,标记的过程其实就是遍历所有的GC Roots ,然后将所有GC Roots 可达的对象,标记为存活的对象。

  • 清除: 遍历整个堆,把未标记的对象清除。

  • 缺点:这个算法需要暂停整个应用,会产生内存碎片。两次扫描,严重浪费时间。

用通俗的话解释一下 标记/清除算法,就是当程序运行期间,若可以使用的内存被耗尽的时候,GC线程就会被触发并将程序暂停,随后将依旧存活的对象标记一遍,最终再将堆中所有没被标记的对象全部清 除掉,接下来便让程序恢复运行。

劣势:

  1. 首先、它的缺点就是效率比较低(递归与全堆对象遍历),而且在进行GC的时候,需要停止应用 程序,这会导致用户体验非常差劲

  2. 其次、主要的缺点则是这种方式清理出来的空闲内存是不连续的,这点不难理解,我们的死亡对象 都是随机的出现在内存的各个角落,现在把他们清除之后,内存的布局自然乱七八糟,而为了应付 这一点,JVM就不得不维持一个内存空间的空闲列表,这又是一种开销。而且在分配数组对象的时 候,寻找连续的内存空间会不太好找。

4.标记压缩

  • 标记整理说明:老年代一般是由标记清除或者是标记清除与标记整理的混合实现。

  • 在整理压缩阶段,不再对标记的对象作回收,而是通过所有存活对象都像一端移动,然后直接清除边界以外的内存。可以看到,标记的存活对象将会被整理,按照内存地址依次排列,而未被标记的内存会被 清理掉,如此一来,当我们需要给新对象分配内存时,JVM只需要持有一个内存的起始地址即可,这比维护一个空闲列表显然少了许多开销。

  • 标记、整理算法 不仅可以弥补 标记、清除算法当中,内存区域分散的缺点,也消除了复制算法当中,内存减半的高额代价;

5.标记清除压缩

先标记清除几次,再进行压缩。

6.总结

  • 内存效率:复制算法 > 标记清除算法 > 标记压缩算法 (时间复杂度);

  • 内存整齐度:复制算法 = 标记压缩算法 > 标记清除算法;

  • 内存利用率:标记压缩算法 = 标记清除算法 > 复制算法;

​ 可以看出,效率上来说,复制算法是当之无愧的老大,但是却浪费了太多内存,而为了尽量兼顾上面所 提到的三个指标,标记压缩算法相对来说更平滑一些 , 但是效率上依然不尽如人意,它比复制算法多了一个标记的阶段,又比标记清除多了一个整理内存的过程。

难道就没有一种最优算法吗?

答案: 无,没有最好的算法,只有最合适的算法 。 —————-> 分代收集算法

年轻代:(Young Gen)

  • 年轻代特点是区域相对老年代较小,对象存活低。
  • 这种情况复制算法的回收整理,速度是最快的。复制算法的效率只和当前存活对象大小有关,因而很适 用于年轻代的回收。而复制算法内存利用率不高的问题,通过hotspot中的两个survivor的设计得到缓解。

老年代:(Tenure Gen)

  • 老年代的特点是区域较大,对象存活率高!
  • 这种情况,存在大量存活率高的对象,复制算法明显变得不合适。一般是由标记清除或者是标记清除与标记整理的混合实现。Mark阶段的开销与存活对象的数量成正比,这点来说,对于老年代,标记清除或 者标记整理有一些不符,但可以通过多核多线程利用,对并发,并行的形式提标记效率。Sweep阶段的 开销与所管理里区域的大小相关,但Sweep “就地处决” 的 特点,回收的过程没有对象的移动。使其相对其他有对象移动步骤的回收算法,仍然是是效率最好的,但是需要解决内存碎片的问题。

后面学习什么是JMM?

欧克 我们的口号是?

本文标签: 笔记视频看狂神JVM