admin管理员组

文章数量:1531299

2023年12月13日发(作者:)

成纤维细胞生长因子15与肝再生_李佳

tumorigenic liver cancer stem/progenitor cells[J].Gastroenterology,

2007,132(7):2542-2556.

[12]Ho MM,Ng AV,Lam S,et al.Side population in

human lung canc-er cell lines and tumors is enriched with stem-like cancer cells

[J].CancerRes,2007,67(10):4827-4833.

[13]Fukuda K,Saikawa Y,Ohashi M,et al.Tumor

initiating potential of side population cells in human gastric

cancer[J]Int J Oncol,

2009,34(5):1201-1207.

[14]Todaro M,Iovino F,Eterno V,et al.Tumorigenic

and metastatic activity of human thyroid cancer stem cells[J].CancerRes,2010,

70(21):8874-8885.

[15]Merchant AA,Matsui W.Targeting Hedgehog-a

cancer stem cell pathway[J].Clin CancerRes,2010,16(12):3130-3140.

[16]Fendrich V,Waldmann J,Esni F,et al.Snail and

Sonic Hedgehog activation in neuroendocrine tumors of the

ileum[J].EndocrRelat

Cancer,2007,14(3):865-874.

[17]Leuna C,Linqbeek M,Shakhova O,et al.Bmi1is

essential for cerebellar development and is overexpressed in

human medullo-

blastomas[J].Nature,2004,428(6980):337-341.

[18]PardalR,Molofsky AV,He S,et al.Stem cell self-renewal and cancer cell proliferation are regulated by common networks that

balance the activation of proto-oncogenes and tumor

suppressors

[J].Cold Spring Harb Symp Quant Biol,2005,70(57):177-185.[19]Pannuti A,Foreman K,Rizzo P,et

al.Targeting Notch to target canc-er stem cells[J].Clin

CancerRes,2010,16(12):3141-3152.[20]Takebe N,Lvy SP.Controversies in cancer stem cell:Targeting

embryonic signaling pathways[J].Clin CancerRes,2010,16

(12):3106-3112.

[21]Ouyang H,Zhuo Y,Zhang K.WNT signaling in stem

cell differen-tiation and tumor formation[J].J Clin Invest,2013,123(4):

1422-1424.

[22]Ayyanan A,Civenni G,Ciarloni L,et al.Increased

Wnt signa-ling triggers oncogenic conversion of human breast

epithelial

cells by a Notch-dependent mechanism[J].PNAS,2006,103

(10):3799-3804.

[23]Woodward WA,Chen MS,et al.WNT/β-catenin

mediates radiation resistance of mouse mammary progenitor

cells[J].PNAS,2007,

104(2):618-623.

[24]Fendrich V,Esni F,Garay MV,et al.Hedgehog

signaling is required for effective regeneration of exocrine

pancreas[J].Gastro-

enterology,2008,135(2):621-631.

[25]Shida T,Furuya M,Nikaido T,et al.Sonic Hedgehog-Gli1signaling pathway might become an effective

therapeutic target in gastrointes-

tinal neuroendocrine carcinomas[J].Cancer Biol Ther,2006,5

(11):1530-1538.

[26]Kunnimalaiyaan M,Chen H.Tumor suppressor role

of Notch-1

535-542.

[27]Chen G,A J,Wang M,et al.Menin promotes the

Wnt signaling pathway in pancreatic endocrine cells[J].Mol

CancerRes,2008,6

(12):1894-1907.

收稿日期:2013-06-23修回日期:2013-11-18编辑:相丹峰

成纤维细胞生长因子15与肝再生

李佳1△(综述),彭创2※(审校)

(1.南华大学,湖南衡阳421000;2.湖南省人民医院肝胆外科,长沙410005)

中图分类号:Q26文献标识码:A文章编号:1006-2084(2014)09-1567-04 doi:10.3969/j.issn.1006-2084.2014.09.011

摘要:肝切除术后,由细胞因子、生长因子及代谢性因子诱发的众多互联信号转导通路反应参与了肝再生的发生、发展及终止。近来研究发现,胆汁酸作为信号分子,通过激活相关受体在肝再生过程中发挥重要作用,其是目前肝再生研究的热点。胆汁酸通过激活肠道法尼酯X受体诱导产生的成纤维细胞生长因子15参与调节胆汁酸代谢,促进了肝再生。

关键词:成纤维细胞生长因子15;法尼酯X受体;胆固醇7α-羟化酶;胆汁酸;肝再生Fibroblast Growth Factor15and LiverRegeneration LI Jia1,PENG Chuang2.(1.University of South

China,Hengyang421000,China;2.Department of

signaling in neuroendocrine tumors[J].Oncologist,2007,12(5): Hepatobiliary Surgery,Hunan Provincial People's Hospital,Changsha410005,China)

Abstract:A multitude of interconnected signaling pathways

provocation by cytokines,growth factors and metabolic factors

are involved in the initiation,progression and termination of the

liver regeneration after hep-atectomy.Recent evidence

suggests that bile acid plays an important role in liver

regeneration by activating the associated receptors as signaling

molecules,it is the hot spot in liver regeneration field.Bile acid

induces farnesoid X receptor,and FXRinduces fibroblast growth

factor15,which participates in the regulation of bile acid

metabolism and liver regeneration.

Key words:Fibroblast growth factor15;Farnesoid X

receptor;Cholesterol7α-hydroxylase;Bile acids;

Liver regeneration

适宜水平的胆汁酸可作为信号分子激活肝内外

相关受体,在肝再生中发挥重要的调节作用;反之,

胆汁酸瘀滞可导致严重的肝损害,抑制肝再生[1-2]。

因此,肝切除术前对梗阻性黄疸进行综合治疗,改善

机体的胆汁酸代谢,促进术后肝脏再生已成为研究热

点。成纤维细胞生长因子15(fibroblast growth factor

15,FGF15)是代谢的关键调控因子之一,其直接或间

接的促进了肝脏的再生。

1FGF15

成纤维细胞生长因子(fibroblast growth factors,FGFs)家族至少由23个成员组成,按种系和序列分为7个亚科[3],FGFs成员通过与细胞膜表面的成纤维细胞生长因子受体(fibroblast growth

factor receptors,FGFRs)结合,产生生物学作用。FGFRs家族包括FGFR1、FGFR2、FGFR3、FGFR4,其是由4个基因编码的单通道跨膜酪氨酸激酶受体,FGFR1、FGFR2、FGFR3通过交替剪切,产生

两种异构体,其具有不同的胞外结构域和配体结合类型,FGFR4则能在肝脏与FGF15特异性结合[4]。

FGFs通常与硫酸乙酰肝素多糖结合,在细胞外基质激活受体,继而受体二聚化和自身磷酸化,激活下游底物。内分泌性的FGF15、FGF19(FGF15与FGF19由同源基因编码,分别在鼠类和人体表达)、FGF21、FGF23与硫酸乙酰肝素多糖亲和性低,能远离分泌细胞进入循环,以内分泌激素的形式广泛作用于各种代谢过程。内分泌FGFs进入循环后,与高

亲和力的Klotho蛋白结合,激活受体[5],因此内分泌性FGFs的作用部位与Klotho蛋白分布直接相关。

Klotho蛋白包括α-Klotho、β-Klotho及lactase-like[6]。Klotho蛋白的表达有组织特异性,β-Klotho 主要表达于肝脏、胆囊、结肠、胰腺,而FGFR4主要表达于肝脏、肾脏、肾上腺及肺等[7]。β-Klotho与FGFR4都在肝脏高表达,而FGF15/19能特异性激活FGFR4与β-Klotho的复合物[8]。因此,FGF15/19的主要作用部位是肝脏。尽管FGF15mRNA广泛表达于中枢神经系统的发育过程中,但在发育成熟的中枢神经系统却不能检测到,而是高度选择性在回肠表达,然后吸收入血,调节胆汁酸代谢平衡[9]。

2FGF15的生成与调控

FGF15主要是由进入肠道(回肠)的胆汁酸激活肠黏膜上的法尼酯X受体(fxrnesoid X receptor,FXR)产生。Diet1基因也参与FGF15的调控,小鼠Diet1基因位于第2号染色体的近端,由39个外显子组成,约730kb,主要在成熟的小肠上皮细胞表达,编码大小为236?103的蛋白质。在表达Diet1基因的小鼠中,血清FGF15水平升高,胆固醇7α-羟化酶(cholesterol7α-hydroxylase,CYP7A1)下降,血清胆汁酸水平较缺失Diet1基因的小鼠低。学者在基因水平证明:①Diet1基因缺失可导致回肠FGF15mRNA 和FGF15水平下降,转基因后可纠正;②给予Diet1剔除小鼠外源性FGF15、CYP7A1水平下降明显,说明Diet1剔除导致FGF15缺乏;③改变人肠道Diet1的表达,FGF19随之改变,当Diet1升高时FGF19升高,下降时FGF19下降;④Diet1与FGF15/19蛋白存在联系,Diet1具有与FGF15结合的囊泡状结构,且Diet1与FGF15蛋白形成共沉淀复合物[10-11]。

Diet1与FXR的调控机制是独立的,在Diet1剔除小鼠的肝脏和回肠中,FXR靶基因表达正常。Diet1可能参与FGF15补偿调节。Diet1通过转录和转录后机制对FGF15/19水平起调节作用[10]。但是,调控Diet1表达的机制尚不清楚,且Diet1蛋白与FGF15蛋白转录后相互作用机制也不清楚,有待进一步研究。

3FGF15与胆汁酸代谢

胆汁酸是维持胆固醇动态平衡和促进脂肪在胃肠道消化的重要物质。同时,胆汁酸也可作为信号分子,通过G蛋白偶联胆汁酸受体1和FXR产生多样化的生物学功能。这些胆汁酸敏感受体在肠上皮细胞表达,G蛋白偶联受体5主要在肠内分泌细胞表达,而FXR在肠上皮细胞表达。胆汁酸激活肠道FXR的主要作用是刺激肠道分泌FGF15[12-13]。

FGF15吸收入血经门静脉入肝,在小异二聚体的协同作用下,与肝内FGFR4特异性结合,激活c-Jun氨基端激酶(c-Jun N-teminal

kinase,JNK)通路,使c-Jun磷酸化,活化的c-Jun与肝受体同系物或肝细胞核因子4α结合形成转录抑制复合体,抑制CYP7A1转录[14]。在完全肠外营养时对猪肝脏的病理学检查发现,肝脏胆汁郁滞,脂肪变性,血液中FGF19显著下降,与胆汁酸-肠道FXR-FGF19轴阻断有关[15]。同时,胆汁酸激活肝内FXR,激活的FXR可诱导短异源二聚体(short heterodimer partner,SHP)表达,SHP与肝受体同系物1(liver receptor homo-logue1,LRH-1)之间可通过相互作用抑制LHR-1对CYP7A1的激活作用[16],肝内FXR亦能增加胆盐输出泵的表达并减少牛磺胆酸钠共转运体的表达[17]。此外,胆汁酸还可激活蛋白激酶C,并诱导库普弗细胞合成并释放炎性细胞因子(肿瘤坏死因子α、白细胞介素1β),而蛋白激酶C及炎性因子均可抑制CYP7A1在肝细胞的表达[18]。 调控胆汁酸代谢的肝内FXR受体和肠道FGF15谁起主导作用呢?2007年Kim等[13]在肝脏和肠道组织特异性剔除FXR的实验中证实,胆汁酸合成增加是由于缺乏FGF15/19导致的。给予FXR选择性激动剂能显著抑制肝脏组织特异性剔除FXR(FxrL)小鼠CYP7A1的表达,而肠道组织特异性剔除FXR(FxrIE)小鼠则不能,说明抑制CYP7A1表达主要是肠道FXR而不是肝脏FXR。FxrIE小鼠72h肝脏CYP7A1mRNA>0.5,而FxrL肝脏的CYP7A1mRNA <0.3[19]。在FGF15-/-、FGFR4-/-、Klotho-/-小鼠均能发现CYP7A1表达上升,胆汁酸水平升高[20-21]。在FGF15-/-小鼠,CYP7A1mRNA的水平是野生型小鼠的3.5倍[9]。肠道FXR持续激活的转基因小鼠(IVP16FXR)较对照组转基因小鼠(IVP16)胆汁酸池总量减少30%,且亲水性的胆汁酸比例升高,从而降低了胆汁酸的细胞毒性[22]。肝外胆管梗阻、化学损伤导致的肝内胆汁瘀滞、基因诱导的肝内胆汁瘀滞时,IVP16FXR较IVP16能更好的保护肝细胞,使转氨酶、胆汁酸、胆红素水平下降[22]。给予外源性FGF15/19或肠道特异性FXR激动剂GW4064、INT747时,与IVP16FXR一样,能保护肝外梗阻性黄疸时的肝细胞[23]。因此,肠道FGF15在胆汁酸代谢中起主导作用。

4FGF15与肝再生

4.1FGF15调节胆汁酸水平促进肝再生过多的胆汁酸积累可导致肝实质细胞受损,抑制正常肝再生,适宜水平的胆汁酸可通过FXR、G蛋白偶联受体5、丝裂原活化蛋白激酶3条途径促进肝再生[24-25]。胆汁酸激活肝内和肠道FXR起作用,而肠道FXR诱导

的FGF15是胆汁酸重要的调控因子,FGF15可通过调控胆汁酸水平促进肝再生。

动物实验证明,FGF15-/-小鼠肝切除术后因持续性肝内胆汁酸水平升高,导致严重的肝损害及高死亡率,而FGF+/+小鼠则表现为低死亡率。70%肝切除术后3d,FGF15-/-小鼠存活率仅为31.9%,而FGF+/+则为93.8%。同时FGF-/-增生的肝细胞及胆管细胞较FGF+/+小鼠显著下降。在FGF-/-小鼠,细胞周期蛋白D1表达受损,肝细胞生长因子(hepatocyte growth factor,HGF)mRNA在肝再生早期表达下降,FXRmRNA的表达显著下调,S期细胞显著下降;FGF+/+小鼠则相反[26]。

FGF15是肝切除术后肝再生过程中维持胆汁酸稳态、保护肝细胞、促进肝再生的重要因子。

4.2FXR与FGF15协同促进肝再生FXR是胆汁酸的主要受体,其参与调控胆汁酸代谢平衡和排毒,同时也在胆汁酸介导的肝再生和损伤修复中起调节作用[25-27]。胆汁酸激活肝内FXR,FXR与forkhead box m1b(Foxm1b)基因内含子3上的FXR反应元件结合,启动Foxm1b基因转录,促进肝再生[27]。胆汁酸激活肠道FXR,诱导回肠产生FGF15,经血入肝后促进肝再生,且腺病毒异位表达的FGF15能促进FxrIE小鼠的肝再生[19]。

肝-FXR与肠-FXR均在70%肝切除术、四氯化碳肝损伤后的肝再生/肝损伤修复过程中起作用,70%肝切除术后FxrL小鼠较对照组小鼠肝再生高峰值下降,血清胆汁酸水平升高,肝脏CYP7A1mRNA 表达升高,Foxm1b表达显著下降;而FxrIE较对照组小鼠肝再生高峰值下降,血清胆汁酸水平升高,肝脏CYP7A1mRNA表达升高[19]。但FxrL与FxrIE比较发现,FxrL肝再生高峰值<40,而FxrIE肝再生高峰值>50,均远远低于对照组的100,而FXR剔除组则<20。因此,FXR对肝再生有重要的调节功能,且肠道FXR诱导的FGF15对肝再生影响更为显著。这可能是与FGF15能直接促进细胞有丝分裂或FGF15是主要的胆汁酸调节器有关。此外,FXR-KO小鼠随年龄增长易导致自发性肝癌[28]。

4.3FGF15在肝再生的急性期抑制CYP7A1表达促进肝再生在肝再生过程中,肝内胆汁酸水平需要快速降低以防止胆汁酸的毒性作用,其主要是通过快速降低CYP7A1mRNA的水平而降低胆汁酸。CYP7A1是胆汁酸合成经典途径的限速酶。已被证明参与调控CYP7A1表达的因素有细胞因子、生长因子及核受体,包括肿瘤坏死因子α、FXR-SHP、HGF、JNK/c-Jun等[29]。

一方面70%肝切除术后CYP7A1的表达受到抑制[25],另一方面肝切除术后胆汁酸排泄增加,这两条平行机制联合保护肝脏免受胆汁酸的细胞毒性作用。肝脏特异性过表达外源性的CYP7A1可损害肝切除术后肝再生,并伴随有肝脏细胞损伤和肝细胞凋亡[14]。因此,抑制CYP7A1的表达在肝切除术后肝再生过程中尤为重要。

Zhang等[14]研究发现,在肝再生过程中,同时存在两个不同阶段的CYP7A1基因调控机制,FGF15-JNK/c-Jun和HGF通路在肝再生的急性期抑制CYP7A1的表达,促进肝再生;FXR和SHP对CYP7A1的调控作用则在肝切除术肝再生晚期阶段起作用。肝切除术胆汁酸排泄增加产生的代谢效应可能亦是通过激活FXR诱导FGF15产生,这有待进一步研究证实。同时肝内胆汁酸合成减少,排泄增加,因此肝内FXR受体激活减少,促进肝再生作用减弱。

4.4FGF15/19促进肝细胞的有丝分裂细胞培养显示,FGF15是肝细胞和胆管上皮细胞的促有丝分裂原,可能增强胆汁酸的促肝再生效应[26]。FGF15/ 19能促进急性肝损伤时肝内HGF的表达,减少炎性趋化因子巨噬细胞炎性蛋白2的表达[31-32],保护急性肝损伤后的肝脏并促进肝脏再生。在肝再生晚期阶段,miR-34a的表达显著升高[33]。体外试验发现,miR-34a结合β-Klotho mRNA上的3'-UTR,下调β-Klotho的表达[34]。在肥胖小鼠体内,过表达的miR-34a使肝脏β-Klotho下降,从而影响FGF19与FGFR4的结合;反之,拮抗miR-34a能恢复肥胖小鼠FGF19与FGFR4/β-Klotho复合物的结合,从而激活细胞外调节蛋白激酶[34]。因此,miR-34a/β-Klotho/ FGF19轴可能对肝再生终止起重要作用。

4.5FGF15促进蛋白质合成FGF15/FGF19通过有丝分裂原活化蛋白介导的激酶信号转导通路,激活蛋白质翻译组件促进蛋白合成。FGF15/19与FGFR4-β-klotho复合物结合,激活鸟苷酸三磷酸酶ras,使ERK上的苏氨酸202和苏氨酸197磷酸化,激活丝裂原活化蛋白相互作用激酶1蛋白激酶,导致肝脏细胞上的真核翻译起始因子eIF4B上的丝氨酸422和eIF4E上的丝氨酸209磷酸化,并形成eIF4F 复合物,介导mRNA与核糖体结合,促进翻译起始[36-38]。FGF15/19也可使核糖体蛋白S6上的丝氨酸235、丝氨酸236磷酸化,诱导帽依赖性翻译,提高自身蛋白质合成的效率[39]。静脉给予外源性FGF19发现,小鼠总体蛋白质合成增加18%,肝脏从头合成白蛋白的速率增加40%,连续给予外源性FGF19,血浆白蛋白水平增加10%[39]。因此,FGF15/19是一种正性促进蛋白质合成的因子。

5结语

深入研究FGF15/19对梗阻性黄疸的肝脏保护及促进肝再生的机制,对梗阻性黄疸的术前综合治疗、减黄方式的选择、残肝再生有重要的临床意义。GW4064和INT747等FXR特异性激动剂有望成为梗阻性黄疸治疗的新手段。Diet1基因调控FGF15表达的机制及FGF15/19促进肝再生的确切信号通路及调控将成为下一步研究的热点。此外,学者们意外发现,转基因慢性高表达FGF19,4个月后可导致癌前病变,10 12个月后可导致肝癌发生[40];其诱导肿瘤发生的可能有待进一步研究。

参考文献

[1]OtaoR,Beppu T,Isiko T,et al.External biliary

drainage and liver regeneration after major hepatectomy[J].Br J Surg,2012,99

(11):1569-1574.

[2]Csanaky IL,Aleksunes LM,Tanaka Y,et al.Role of

hepatic trans-porters in prevention of bile acid toxicity after

partial hepatectomy

in mice[J].Am J Physiol Gastrointest Liver Physiol,2009,297

(3):419-433.

[3]Itoh N,Ornitz DM.Evolution of the Fgf and Fgfr gene

families[J].Trends Genet,2004,20(11):563-569.

[4]Beenken A,Mohammadi M.The FGF family:biology,pathophysiol-ogy and therapy[J].NatRev Drug Discov,2009,8(3):235-253.[5]Tomiyama K,MaedaR,Urakawa I,et al.Relevant use of Klotho in FGF19subfamily signaling system in vivo[J].Proc Natl Acad Sci

U S A,2010,107(4):1666-1671.

[6]Kharitonenkov A,Dunbar JD,Bina HA,et al.FGF-21/FGF-21 receptor interaction and activation is determined by

betaKlotho

[J].J Cell Physiol,2008,215(1):1-7.

[7]Fon Tacer K,Bookout AL,Ding X,et al.Research

resource:Com-prehensive expression atlas of the fibroblast

growth factor system in

adult mouse[J].Mol Endocrinol,2010,24(10):2050-2064.[8]Wu AL,Coulter S,Liddle C,et

al.FGF19regulates cell prolifera-tion,glucose and bile acid

metabolism via FGFR4-dependent and

independent pathways[J].PLoS One,2011,6(3):e17868.

[9]Inagaki T,Choi M,Moschetta A,et al.Fibroblast

growth factor15 functions as an enterohepatic signal to regulate

bile acid homeostasis

[J].Cell Metab,2005,2(4):217-225.

[10]Vergnes L,Lee JM,ChinRG,et al.Diet1Functions

in the FGF15/ 19enterohepatic signaling axis to modulate bile

acid and lipid

levels[J].Cell Metab,2013,17(6):916-928.

[11]Phan J,Pesaran T,DavisRC,et al.The Diet1locus

confers protec-tion against hypercholesterolemia through

enhanced bile acid

metabolism[J].J Bio Chem,2002,277(1):469-477.

[12]Potthoff MJ,Potts A,He T,et al.Colesevelam

suppresses hepatic glycogenolysis by TGR5-mediated induction

of GLP-1action in DIO mice[J].Am J Physiol Gastrointest Liver Physiol,2013,304

(4):G371-G380.

[13]Kim I,Ahn SH,Inagaki T,et al.Differential

regulation of bile acid homeostasis by the farnesoid X receptor

in liver and intestine[J].J

LipidRes,2007,48(12):2664-2672.

[14]Zhang L,Huang X,Meng Z,et al.Significance and

mechanism of CYP7a1gene regulation during the acute phase of

liver regenera-

tion[J].Mol Endocrinol,2009,23(2):137-145.

[15]Jain AK,Stoll B,Burrin DG,et al.Enteral bile acid

treatment improves parenteral nutrition-related liver disease and

intestinal

mucosal atrophy in neonatal pigs[J].Am J Physiol

Gastrointest

Liver Physiol,2012,302(2):218-224.

[16]Seok S,Kanamaluru D,Xiao Z,et al.Bile Acid

Signal-induced phosphorylation of small heterodimer partner by

protein kinase Cζ

Is critical for epigenomic regulation of liver metabolic genes[J].J

Biol Chem,2013,288(32):23252-23263.

[17]Sinal CJ,Tohkin M,Miyata M,et al.Targeted

disruption of the nuclear receptor FXR/BARimpairs bile acid and

lipid homeostasis

[J].Cell,2000,102(6):731-744.

[18]Holt JA,Luo G,Bilin AN,et al.Definition of a novel

growth factor-dependent signal cascade for the suppression of

bile acid biosyn- thesis[J].Genes Dev,2003,17(13):1581-1591.

[19]Zhang L,Wang YD,Chen WD,et al.Promotion of

liver regenera-

tion/repair by farnesoid X receptor in both liver and intestine

in

mice[J].Hepatology,2012,56(6):2336-2343.

[20]Yu C,Wang F,Kan M,et al.Elevated cholesterol

metabolism and bile acid synthesis in mice lacking membrane

tyrosine kinase

receptor FGFR4[J].J Bio Chem,2000,275(20):15482-15489.[21]Ito S,Fujimori T,Furuya A,et

al.Impaired negative feedback suppression of bile acid

synthesis in mice lacking betaKlotho[J].J

Clin Invest,2005,115(8):2202-2208.

[22]Modica S,Petruzzeli M,Bellafante E,et

al.Selective activation of nuclear bile acid receptor FXRin the

intestine protects mice

against cholestasis[J].Gastroenterology,2012,142(2):355-365.[23]Fiorucci S,Clerici C,Antonelli E,et

al.Protective effects of6-ethyl chenodeoxycholic acid,a

farnesoid X receptor ligand,in estrogen-

induced cholestasis[J].J Phamacol Exp Ther,2005,313(2):604-

612.

[24]Wang YD,Yang F,Chen WD,et al.Farnesoid X

receptor protects liver cells from apoptosis induced by serum

deprivation in vitro and

fasting in vivo[J].Mol Endocrinol,2008,22(7):1622-1632.[25]Huang W,Ma K,Zhang J,et al.Nuclear

receptor-dependent bile acid signaling is required for normal liver regeneration[J].

Science,2006,312(5771):233-236.

[26]Uriate I,Fernandez-Barrena MG,Monte MJ,et

al.Identification of fibroblast growth factor15as a novel

mediator of liver regeneration

and its application in the prevention of post-resection liver

failure

in mice[J].Gut,2013,62(6):899-910.

[27]Chen WD,Wang YD,Zhang L,et al.Farnesoid X

receptor allevi-ates age-related proliferation defects in

regenerating mouse livers by

activating forkhead box m1b transcription[J].Hepatology,2010,

51(3):953-962.

[28]Kim I,Morimura K,Shah Y,et al.Spontaneous

hepatocarcinogene-sis in farnesoid X receptor-null mice[J].Carcinogenesis,2007,28

(5):940-946.

[29]Schaap FG,van der Gaag NA,Gouma DJ,et

al.High expression of the bile salt-homeostatic hormone

fibroblast growth factor19in the

liver of patients with extrahepatic cholestasis[J].Hepatology,2009,

49(4):1228-1235.

[30]Li T,Jahan A,Chiang JY.Bile acids and cytokines

inhibit the human cholesterol7alpha-hydroxylase gene via the

JNK/c-jun

pathway in human liver cells[J].Hepatology,2006,43(6):

120-1210. [31]Zhang Y,Hong JY,Rockwell CE,et al.Effect of bile

duct ligation on bile acid composition in mouse erum and liver[J].Liver Int,

2012,32(1):58-69.

[32]Sakai N,Van Sweringen HL,BelizaireRM,et

al.Interleukin-37 reduces liver inflammatory injury via effects on

hepatocytes and

non-parenchymal cells[J].J Gastroenterol Hepatol,2012,27

(10):1609-1616.

[33]Chen H,Sun Y,DongR,et al.Mir-34a Is

Upregulated during Liver Regeneration inRats and Is Associated

with the Suppression of

Hepatocyte Proliferation[J].PLoS One,2011,6(5):1-11.

[34]Fu T,Choi SE,Kim DH,et al.Aberrantly elevated

microRNA-34a in obesity attenuates hepatic responses to

FGF19by targeting a

membrane coreceptorβ-Klotho[J].Proc Natl Acad Sci U S

A,

2012,109(40):16137-16142.

[35]Fumagalli S,Thomas G.Translational control of

gene expression [M].New York:Cold spring harbor

laboratory press,2000:

695-717.

[36]Shin DJ,Osborne TF.Peroxisome proliferator-activated receptor-γcoactivator-1αactivation of CYP7A1during

food restriction and dia-

betes is still inhibited by small heterodimer partner[J].J

Biol Chem,2008,283(22):15089-15096.

[37]Kurosu H,Choi M,Ogawa Y,et al.Tissue-specific

expression of betaKlotho and fibroblast growth factor(FGF)receptor isoforms

determines metabolic activity of FGF19and FGF21[J].J

Biol

Chem,2007,282(37):26687-26695.

[38]Lin BC,Wang M,Blackmore C,et al.Liver-specific

activities of FGF19require Klotho beta[J].J Biol Chem,2007,282(37):

27277-27284.

[39]Kir S,Beddow SA,Samuel VT,et al.FGF19as a

Postprandial,insulin-independent activator of hepatic protein

and glycogen

synthesis[J].Science,2011,331(6024):1621-1624.

[40]Nicholes K,Guillet S,Tomlinson E,et al.A mouse

model of hepa-tocellular carcinoma:ectopic expression of

fibroblast growth factor

19in skeletal muscle of transgenic mice[J].Am J Pothol,2002,

160(6):2295-2307.

收稿日期:2013-12-30修回日期:2014-03-26编辑:辛欣

本文标签: 胆汁酸再生表达肝脏促进