admin管理员组

文章数量:1531453

2023年12月25日发(作者:)

788 PARTICULATE MATTER IN INJECTIONS

This general chapter is harmonized with the corresponding texts of the European Pharmacopoeia

and/or the Japanese Pharmacopoeia. These pharmacopeias have undertaken not to make any

unilateral change to this harmonized chapter. Portions of the present general chapter text that are

national USP text, and therefore not part of the harmonized text, are marked with symbols (specify this fact.

Particulate matter in injections and parenteral infusions consists of extraneous mobile undissolved

particles, other than gas bubbles, unintentionally present in the solutions.

As stated in Injections 1, solutions for injection administered by the intramuscular or

subcutaneous route must meet the requirements of Particulate Matter in Injections 788.

(Official August 1, 2011)

Particulate Matter in Injections 788Particulate Matter in Injections 788Particulate Matter in

Injections 788

For the determination of particulate matter, two procedures, Method 1 (Light Obscuration Particle

Count Test) and Method 2 (Microscopic Particle Count Test), are specified hereinafter. When

examining injections and parenteral infusions for subvisible particles, Method 1 is preferably applied.

However, it may be necessary to test some preparations by the Light Obscuration Particle Count

Test followed by the Microscopic Particle Count Test to reach a conclusion on conformance to the

requirements.

Not all parenteral preparations can be examined for subvisible particles by one or both of these

methods. When Method 1 is not applicable, e.g., in the case of preparations having reduced clarity or

increased viscosity, the test should be carried out according to Method 2. Emulsions, colloids, and

liposomal preparations are examples. Similarly, products that produce air or gas bubbles when

drawn into the sensor may also require microscopic particle count testing. If the viscosity of the

preparation to be tested is sufficiently high so as to preclude its examination by either test method, a

quantitative dilution with an appropriate diluent may be made to decrease viscosity, as necessary, to

allow the analysis to be performed.

The results obtained in examining a discrete unit or group of units for particulate matter cannot be

extrapolated with certainty to other units that remain untested. Thus, statistically sound sampling

plans must be developed if valid inferences are to be drawn from observed data to characterize the

level of particulate matter in a large group of units.

METHOD 1 LIGHT OBSCURATION PARTICLE COUNT TEST

Use a suitable apparatus based on the principle of light blockage that allows for an automatic

determination of the size of particles and the number of particles according to size. The definition for

particle-free water is provided in Reagent Specifications under Reagents, Indicators, and Solutions.

The apparatus is calibrated using dispersions of spherical particles of known sizes between 10 µm

and 25 µm. These standard particles are dispersed in particle-free water. Care must be taken to

avoid aggregation of particles during dispersion. System suitability can be verified by using the

USP Particle Count RS.

) to

General Precautions

The test is carried out under conditions limiting particulate matter, preferably in a laminar flow cabinet.

Very carefully wash the glassware and filtration equipment used, except for the membrane filters, with

a warm detergent solution, and rinse with abundant amounts of water to remove all traces of

detergent. Immediately before use, rinse the equipment from top to bottom, outside and then inside,

with particle-free water.

Take care not to introduce air bubbles into the preparation to be examined, especially when fractions

of the preparation are being transferred to the container in which the determination is to be carried

out.

In order to check that the environment is suitable for the test, that the glassware is properly cleaned,

and that the water to be used is particle-free, the following test is carried out: determine the

particulate matter in 5 samples of particle-free water, each of 5 mL, according to the method

described below. If the number of particles of 10 µm or greater size exceeds 25 for the combined 25

mL, the precautions taken for the test are not sufficient. The preparatory steps must be repeated until

the environment, glassware, and water are suitable for the test.

Method

Mix the contents of the sample by slowly inverting the container 20 times successively. If necessary,

cautiously remove the sealing closure. Clean the outer surfaces of the container opening using a jet

of particle-free water and remove the closure, avoiding any contamination of the contents. Eliminate

gas bubbles by appropriate measures such as allowing to stand for 2 minutes or sonicating.

For large-volume parenterals, single units are tested. For small-volume parenterals less than 25 mL in

volume, the contents of 10 or more units are combined in a cleaned container to obtain a volume of

not less than 25 mL; the test solution may be prepared by mixing the contents of a suitable number

of vials and diluting to 25 mL with particle-free water or with an appropriate particle-free solvent when

particle-free water is not suitable. Small-volume parenterals having a volume of 25 mL or more may

be tested individually.

Powders for parenteral use are reconstituted with particle-free water or with an appropriate particle-free solvent when particle-free water is not suitable.

The number of test specimens must be adequate to provide a statistically sound assessment. For

large-volume parenterals or for small-volume parenterals having a volume of 25 mL or more, fewer

than 10 units may be tested, using an appropriate sampling plan.

Remove four portions, not less than 5 mL each, and count the number of particles equal to or greater

than 10 µm and 25 µm. Disregard the result obtained for the first portion, and calculate the mean

number of particles for the preparation to be examined.

Evaluation

For preparations supplied in containers with a nominal volume of more than 100 mL, apply the criteria

of Test 1.A.

For preparations supplied in containers with a nominal volume of less than 100 mL, apply the criteria

of Test 1.B.

For preparations supplied in containers with a nominal volume of 100 mL, apply the criteria of Test

1.B. [NOTE—Test 1.A is used in the Japanese Pharmacopeia. ]

If the average number of particles exceeds the limits, test the preparation by the Microscopic Particle

Count Test.

Test 1.A (Solutions for parenteral infusion or solutions for injection supplied in containers with a

nominal content of more than 100 mL)—The preparation complies with the test if the average number

of particles present in the units tested does not exceed 25 per mL equal to or greater than 10 µm and

does not exceed 3 per mL equal to or greater than 25 µm.

Test 1.B (Solutions for parenteral infusion or solutions for injection supplied in containers with a

nominal content of less than 100 mL)—The preparation complies with the test if the average number

of particles present in the units tested does not exceed 6000 per container equal to or greater than 10

µm and does not exceed 600 per container equal to or greater than 25 µm.

METHOD 2 MICROSCOPIC PARTICLE COUNT TEST

Use a suitable binocular microscope, a filter assembly for retaining particulate matter, and a

membrane filter for examination.

The microscope is adjusted to 100 ± 10 magnifications and is equipped with an ocular micrometer

calibrated with an objective micrometer, a mechanical stage capable of holding and traversing the

entire filtration area of the membrane filter, and two suitable illuminators to provide episcopic

illumination in addition to oblique illumination.

The ocular micrometer is a circular diameter graticule (see Figure 1)

Fig. 1. Circular diameter graticule. The large circle divided by crosshairs into quadrants is designated

the graticule field of view (GFOV). Transparent and black circles having 10-µm and 25-µm diameters

at 100× are provided as comparison scales for particle sizing.

and consists of a large circle divided by crosshairs into quadrants, transparent and black reference

circles 10 µm and 25 µm in diameter at 100 magnifications, and a linear scale graduated in 10-µm

increments. It is calibrated using a stage micrometer that is certified by either a domestic or

international standard institution. A relative error of the linear scale of the graticule within ±2% is

acceptable. The large circle is designated the graticule field of view (GFOV).

Two illuminators are required. One is an episcopic brightfield illuminator internal to the microscope, the

other is an external, focusable auxiliary illuminator that can be adjusted to give reflected oblique

illumination at an angle of 10 to 20.

The filter assembly for retaining particulate matter consists of a filter holder made of glass or other

suitable material, and is equipped with a vacuum source and a suitable membrane filter.

The membrane filter is of suitable size, black or dark gray in color, nongridded or gridded, and 1.0 µm

or finer in nominal pore size.

General Precautions

The test is carried out under conditions limiting particulate matter, preferably in a laminar flow cabinet.

Very carefully wash the glassware and filter assembly used, except for the membrane filter, with a

warm detergent solution, and rinse with abundant amounts of water to remove all traces of detergent.

Immediately before use, rinse both sides of the membrane filter and the equipment from top to

bottom, outside and then inside, with particle-free water.

In order to check that the environment is suitable for the test, that the glassware and the membrane

filter are properly cleaned, and that the water to be used is particle-free, the following test is carried

out: determine the particulate matter of a 50-mL volume of particle-free water according to the

method described below. If more than 20 particles 10 µm or larger in size or if more than 5 particles

25 µm or larger in size are present within the filtration area, the precautions taken for the test are not

sufficient. The preparatory steps must be repeated until the environment, glassware, membrane

filter, and water are suitable for the test.

Method

Mix the contents of the samples by slowly inverting the container 20 times successively. If necessary,

cautiously remove the sealing closure. Clean the outer surfaces of the container opening using a jet

of particle-free water and remove the closure, avoiding any contamination of the contents.

For large-volume parenterals, single units are tested. For small-volume parenterals less than 25 mL in

volume, the contents of 10 or more units are combined in a cleaned container; the test solution may

be prepared by mixing the contents of a suitable number of vials and diluting to 25 mL with particle-free water or with an appropriate particle-free solvent when particle-free water is not suitable. Small-volume parenterals having a volume of 25 mL or more may be tested individually.

Powders for parenteral use are constituted with particle-free water or with an appropriate particle-free

solvent when particle-free water is not suitable.

The number of test specimens must be adequate to provide a statistically sound assessment. For

large-volume parenterals or for small-volume parenterals having a volume of 25 mL or more, fewer

than 10 units may be tested, using an appropriate sampling plan.

Wet the inside of the filter holder fitted with the membrane filter with several mL of particle-free water.

Transfer to the filtration funnel the total volume of a solution pool or of a single unit, and apply a

vacuum. If needed, add stepwise a portion of the solution until the entire volume is filtered. After the

last addition of solution, begin rinsing the inner walls of the filter holder by using a jet of particle-free

water. Maintain the vacuum until the surface of the membrane filter is free from liquid. Place the

membrane filter in a Petri dish, and allow the membrane filter to air-dry with the cover slightly ajar.

After the membrane filter has been dried, place the Petri dish on the stage of the microscope, scan

the entire membrane filter under the reflected light from the illuminating device, and count the

number of particles that are equal to or greater than 10 µm and the number of particles that are equal

to or greater than 25 µm. Alternatively, partial membrane filter count and determination of the total

filter count by calculation is allowed. Calculate the mean number of particles for the preparation to be

examined.

The particle sizing process with the use of the circular diameter graticule is carried out by estimating

the equivalent diameter of the particle in comparison with the 10 µm and 25 µm reference circles on

the graticule. Thereby the particles are not moved from their initial locations within the graticule field

of view and are not superimposed on the reference circles for comparison. The inner diameter of the

transparent graticule reference circles is used to size white and transparent particles, while dark

particles are sized by using the outer diameter of the black opaque graticule reference circles.

In performing the Microscopic Particle Count Test, do not attempt to size or enumerate amorphous,

semiliquid, or otherwise morphologically indistinct materials that have the appearance of a stain or

discoloration on the membrane filter. These materials show little or no surface relief and present a

gelatinous or film-like appearance. In such cases, the interpretation of enumeration may be aided by

testing a sample of the solution by the Light Obscuration Particle Count Test.

Evaluation

For preparations supplied in containers with a nominal volume of more than 100 mL, apply the criteria

of Test 2.A.

For preparations supplied in containers with a nominal volume of less than 100 mL, apply the criteria

of Test 2.B.

For preparations supplied in containers with a nominal volume of 100 mL, apply the criteria of Test

2.B. [NOTE—Test 2.A is used in the Japanese Pharmacopeia. ]

Test 2.A (Solutions for parenteral infusion or solutions for injection supplied in containers with a

nominal content of more than 100 mL)—The preparation complies with the test if the average number

of particles present in the units tested does not exceed 12 per mL equal to or greater than 10 µm and

does not exceed 2 per mL equal to or greater than 25 µm.

Test 2.B (Solutions for parenteral infusion or solutions for injection supplied in containers with a

nominal content of less than 100 mL)—The preparation complies with the test if the average number

of particles present in the units tested does not exceed 3000 per container equal to or greater than 10

µm and does not exceed 300 per container equal to or greater than 25 µm.

Auxiliary Information— Please check for your question in the FAQs before contacting USP.

Topic/QuestionGeneral ChapterContactDesmond G. Hunt, Ph.D.

Senior Scientific Liaison

1-301-816-8341Expert Committee(GCDF2010) General Chapters - Dosage FormsUSP34–NF29 Page 326

Pharmacopeial Forum: Volume No. 35(3) Page 628

本文标签: 药典美国污染微粒