admin管理员组

文章数量:1530842

2024年2月9日发(作者:)

CD

索尼和飞利浦公司联手研制的一种数字音乐光盘,有12cm直径和8cm直径两种规格,以前者最为常见,它能提供74分钟的高质量音乐。

CD-ROM

用于存储电脑数据的只读型CD。

VCD

采用MPEG-1压缩编码技术的影音光盘,其图像清晰度和VHS录像带差不多。

超级VCD

VCD的改进产品,采用MPEG-2编码,图像清晰度得到了提高。

DVD

一种外型类似CD的新一代超大容量光盘,它将广泛应用于高质量的影音节目记录和用作电脑的海量存储设备。

MD

索尼公司研制的迷你可录音乐光盘,外型象电脑用3.5英寸软盘,但采用光学信号拾取系统,类似CD。MD使用高效的压缩技术来达到与CD相同的记录时间,音质则接近CD。

D/A转换器

数码音响产品(例如CD、DVD) 中将数字音频信号转换为模拟音频信号的装置。D/A转换器可以做成独立的机器,以配合CD转盘使用,此时常常称为解码器。

CD转盘

将CD机的机械传动部分独立出来的机器。

超取样

取样频率数倍于CD制式的标准取样频率44.1kHz,其目的是便于D/A转换之后数码噪声的滤除,改善CD机的高频相位失真。早期的CD机使用2倍频或4倍频取样,近期的机器已经达到8倍或者更高。

HDCD

High Definition Compact Disc(高解析度CD)的缩写——一种改善CD音质的编码系统,兼容传统的CD,但需要在带HDCD解码的CD机上重放或外接一台HDCD解码器才能获得改善的效果。

me2000 发表于 2007-8-11 11:55

比特(bit)

二进制数码信号的最小组成单位,它总是取0或1两种状态之一。

比特流

飞利浦公司的一种将CD数码信号转换成模拟音乐信号的技术。

杜比B,C,S

美国杜比公司研制的系列磁带降噪系统,用于降低磁带录音产生的“嘶嘶声”,扩展动态范围。B型降噪系统能降噪10dB,C型增加到20dB,S型则可达24dB。

杜比HX Pro

不是降噪系统,而是一种改善磁带高频记录失真的技术,通常也称为“上动态余量扩展”。

杜比环绕声(Dolby Surround)

一种将后方效果声道编码至立体声信道中的声音。重放时需要一台解码器将环绕声信号从编码的声音中分离出来。

杜比定向逻辑

(Dolby Pro-Logic)

在杜比环绕声的基础上增加了一个前方中置声道,以便将影片中的对白锁定到屏幕上。

杜比数字(Dolby Digital)

也称为AC-3,杜比实验室发布的新一代家庭影院环绕声系统。其数字化的伴音中包含左前置、中置、右前置、左环绕、右环绕5个声道的信号,它们均是独立的全频带信号。此外还有一路单独的超低音效果声道,俗称0.1声道。所有这些声道合起来就是所谓的5.1声道。

AV功放

专门为家庭影院用途而设计的放大器,一般都具备4 个以上的声道数以及环绕声解码功能。

定向逻辑环绕声放大器

带杜比定向逻辑解码功能的AV功放。

杜比数字放大器

也称为AC-3放大器,一种带杜比数字解码功能的AV功放。

接收机

带有收音功能的放大器。

THX

美国卢卡斯影业公司制定的一种环绕声标准,它对杜比定向逻辑环绕系统进行了改进,使环绕声效果得到进一步的增强。THX标准对重放器材例如影音源、放大器、音箱甚至连接线材都有一套比较严格而具体的要求,达到这一标准并经卢卡斯认证通过的产品,才授予THX标志。

THX 5.1

基于杜比数字系统的THX。

DTS

分离通道家庭影院数码环绕声系统(Discrete-channel home cinema digital sound system),它也采用独立的5.1声道, 效果达到甚至优于杜比数字环绕声系统,是杜比数码环绕声强劲的竞争对手。

SRS

美国SRS公司的一种用两只音箱产生环绕声效果的系统。

me2000 发表于 2007-8-11 11:55

分频器

音箱内的一种电路装置,用以将输入的音乐信号分离成高音、中音、低音等不同部分,然后分别送入相应的高、中、低音喇叭单元中重放。

双放大器分音(Biamping)

音箱的每一只喇叭单元由一个独立的放大器通道来进行驱动的一种连接方式。一对两分频的的音箱需要使用两台立体声功放和两对喇叭线。见“双线分音”。

双线分音(Biwiring)

用两套喇叭线分别传送音乐信号的高、低音部分的一种接线方式。双线分音需要使用具备两对接线端子的专门设计的音箱。

放大器

前置放大器和功率放大器的统称。

功率放大器

简称功放,用于增强信号功率以驱动音箱发声的一种电子装置。不带信号源选择、音量控制等附属功能的功率放大器称为后级。

前置放大器

功放之前的预放大和控制部分,用于增强信号的电压幅度,提供输入信号选择,音调调整和音量控制等功能。前置放大器也称为前级。

后级

见“功率放大器”。

前级

见“前置放大器”。

合并式放大器

将前置放大和功率放大两部分集中在一个机箱内的放大器。

胆机

电子管放大器的另一种说法。

额定功率

对功放来说,额定功率一般指能够连续输出的有效值(RMS)功率;对音箱来说,额定功率通称指音箱能够长期承受这一数值的功率而不致损坏,这不意味着一定需要这么大功率的功放才推得动,音箱的驱动难易主要由其灵敏度和阻抗特性来决定。也不意味着不能配输出功率大于音箱额定功率的功放。正如开汽车一

样,驾驶300公里时速的跑车不等于就会发生车祸,你可以不开那么快。同样,只要音量不盲目加大,大功率功放一样可以配小功率音箱。

峰值音乐输出功率(PMPO)

以音乐信号瞬间能达到的峰值电压来计算的输出功率,其商业意义大于实际作用。PMPO功率可以比国际公认的有效值额定输出功率(RMS)高出3至4倍,例如早期的手提式收录机每声道RMS功率仅4、5瓦,但采用PMPO来标示,数值一下就可以增大到20W左右。

单端放大

功放的输出级由一只放大元件(或多只元件但并联成一组)完成对信号正负两个半周的放大。单端放大机器只能采取甲类工作状态。

推挽放大

功放的输出级有两个“臂”(两组放大元件),一个“臂”的电流增加时,另一个“臂”的电流则减小,二者的状态轮流转换。对负载而言,好象是一个“臂”在推,一个“臂”在拉,共同完成电流输出任务。尽管甲类放大器可以采用推挽式放大,但更常见的是用推挽放大构成乙类或甲乙类放大器。

功率放大器中功放管的导电方式,有甲类(A类)、乙类(B类)和甲乙类(AB类)之分。

甲类

又称为A类,在信号的整个周期内(正弦波的正负两个半周),放大器的任何功率输出元件都不会出现电流截止(即停止输出)的一类放大器。甲类放大器工作时会产生高热,效率很低,但固有的优点是不存在交越失真。单端放大器都是甲类工作方式,推挽放大器可以是甲类,也可以是乙类或甲乙类。

乙类

又称为B类,正弦信号的正负两个半周分别由推挽输出级的两“臂”轮流放大输出的一类放大器,每一“臂”的导电时间为信号的半个周期。乙类放大器的优点是效率高,缺点是会产生交越失真。

甲乙类

又称AB类,界于甲类和乙类之间,推挽放大的每一个“臂”导通时间大于信号的半个周期而小于一个周期。甲乙类放大有效解决了乙类放大器的交越失真问题,效率又比甲类放大器高,因此获得了极为广泛的应用。

失真

设备的输出不能完全复现其输入,产生了波形的畸变或者信号成分的增减。

谐波失真

由于放大器不够理想,输出的信号除了包含放大了的输入成分之外,还新添了一些原信号的2倍、3倍、4倍……甚至更高倍的频率成分(谐波), 致使输出波形走样。这种因谐波引起的失真叫做谐波失真。

交越失真

乙类放大器特有的一种失真。这种失真产生的机理是因信号的正负半周分别由不同的两组器件进行放大,正负两边的波形不能平滑地衔接。

音染

音乐自然中性的对立面,即声音染上了节目本身没有的一些特性,例如对着一个罐子讲话得到的那种声音就是典型的音染。音染表明重放的信号中多出了(或者是减少了)某些成分,这显然是一种失真。

声压

表示声音强弱的物理量。

声压级

以分贝数表示的声压。

灵敏度

对放大器来说,灵敏度一般指达到额定输出功率或电压时输入端所加信号的电压大小,因此也称为输入灵敏度;对音箱来说,灵敏度是指给音箱施加1W的输入功率,在喇叭正前方1米远处能产生多少分贝的声压值。

电平

电子系统中对电压、电流、功率等物理量强弱的通称。电平一般以分贝(dB)为单位来表示。即事先取定一个电压或电流数作为参考值(0dB),用待表示的量与参考值之比取对数,再乘以20作为电平的分贝数(功率的电平值改乘10)。

分贝(dB)

电平和声压级的单位。

me2000 发表于 2007-8-11 11:56

阻尼系数

负载阻抗与放大器输出阻抗之比。使用负反馈的晶体管放大器输出阻抗极低,仅零点几欧姆甚至更小,所以阻尼系数可达数十到数百。

反馈

也称为回授,一种将输出信号的一部分或全部回送到放大器的输入端以改变电路放大倍数的技术。

负反馈

导致放大倍数减小的反馈。负反馈虽然使放大倍数蒙受损失,但能够有效地拓宽频响,减小失真,因此应用极为广泛。

正反馈

使放大倍数增大的反馈。正反馈的作用与负反馈刚好相反,因此使用时应当小心谨慎。

动态范围

信号最强的部分与最微弱部分之间的电平差。对器材来说,动态范围表示这件器材对强弱信号的兼顾处理能力。

频率响应 简称频响,衡量一件器材对高、中、低各频段信号均匀再现的能力。对器材频响的要求有两

方面,一是范围尽量宽,即能够重播的频率下限尽量低,上限尽量高;二是频率范围内各点的响应尽量平坦,避免出现过大的波动。

瞬态响应

器材对音乐中突发信号的跟随能力。瞬态响应好的器材应当是信号一来就立即响应,信号一停就嘎然而止,决不拖泥带水。

信噪比(S/N)

又称为讯噪比,信号的有用成份与杂音的强弱对比,常常用分贝数表示。设备的信噪比越高表明它产生的杂音越少。

正弦波

频率成分最为单一的一种信号,因这种信号的波形是数学上的正弦曲线而得名。任何复杂信号——例如音乐信号,都可以看成由许许多多频率不同、大小不等的正弦波复合而成。

波长

声波在一个周期内的行程。波长在数值上等于声速(344米/秒)除以频率。

屏蔽

在电子装置或导线的外面覆盖易于传导电磁波的材料,以防止外来电磁杂波对有用信号产生干扰的技术。

阻抗匹配

一件器材的输出阻抗和所连接的负载阻抗之间所应满足的某种关系,以免接上负载后对器材本身的工作状态产生明显的影响。对电子设备互连来说,例如信号源连放大器,前级连后级,只要后一级的输入阻抗大于前一级的输出阻抗5-10倍以上,就可认为阻抗匹配良好;对于放大器连接音箱来说,电子管机应选用与其输出端标称阻抗相等或接近的音箱,而晶体管放大器则无此限制,可以接任何阻抗的音箱。

煲机 新器材使用之前的加电预热过程,以便让器材的声音进入稳定的状态。

ADD

指CD唱片按模拟方式录音,按数字方式进行编辑和制作母带。

AC(Alternating Current)

交流电,指电流方向会作周期性改变的市电供电电源,英美多用60Hz,我国则采用50Hz的。

有源分频网络(Active Crossover)

指可将声频信号的频率组成分量(低音、中音及高音)在放大之前便进行分组而分别加到各自的扬声器系统去的一种有源电子网络。虽然有源分频网络多半均内装于超低音音箱之类的音箱之中,用以推动低音喇叭,但在多路系统中,也可单独使用有源分频网络。

ATRAC

指自适应变换声学编码。系一种由日本索尼公司在其推出的MD磁光盘录音机中所采用的低比特率数据压缩编码技术。

发烧友(Audiophile)

指对音响技术特别偏爱的那些人。

带宽(Bandwidth)

指一段频率范围,对于音频录音说来,带宽乃指声系统或录音装置所能包容的乐队演出或独唱演员演唱的频率响应范围;而对家庭声音重放装置说来,带宽则指系统重放时能“听到”的频率范围,通常在20Hz或30Hz到15kHz或20kHz的范围内。

双极式音箱(Bipolar Loudspeaker)

指发声单元分别指向音箱前方和后方且同相馈送信号的那种音箱装置。由于推动的信号为同相位的,故声信号不会有反相位的抵消,侧向的声辐射也不会有急剧地衰减。双极式音箱通常需摆放在离前墙较远处,以便让其后向指向的声波能有适当的反射。

连接电缆(Cables)

指讯号线或喇叭线,通常用导线的含铜量的纯度来表示导线的好坏,如6N便表示此导线的含铜量已达百分之99.99997。性能好的喇叭线多由多芯线组成,也有用单根或几根口径粗的铜线的。在有方向性的喇叭线上更标以箭头,指示从功放到音箱的接线方向,有些讯号线上也标有箭头,用于指示从信号源到功放的接线方向。

DAB(Digital Audio Broadcasting)

指数字音频广播。不论是调频(FM)还是调幅(AM)广播,皆为数字立体声,英国BBC电台正在某些地区试播,我国近年来也在广东、北京等地开始试播。DAB需用专门的接收机(收音机)来收听。

DAC(数模变换器,也称解码器)

指将接通/断开的脉冲信号变换为模拟声信号的数模(D/A)变换器。在CD唱机内均已装有DAC,但外装的DAC可让CD唱机或其它数字播放机音质升级。

DAT(数字音频磁带机)

Digital Audio Tape的缩写。指主要用于专业录音的一种数字录音装置,采用了同录像机(VCR)相似的旋转磁头。

数据压缩(Data Reduction)

指设法减少存储音乐所需要的数据量的一种技术。日本索尼公司在其MD磁光盘录音机中即采用了ATRAC压缩编码技术,而荷兰飞利浦公司则在其开发的DCC数字盒式磁带机中采用了类似的PASC(精确自适应子带编码)技术。此二种方法皆系采用数据压缩的方法来设法去掉那些人耳所听不到的数据。

DCC(Digital Compact Cassette)

由荷兰飞利浦公司开发的一种家庭用数字盒式磁带录音机,音质听起来已跟CD唱机的接近,但使用上不甚方便。由于与索尼公司的MD相互竞争而以失败告终,目前已逐渐在市场上消失。

DDD

指CD唱片的录音、编辑和母带制作均采用了数字处理的方式。

dB(分贝)

测量声压变化的单位,当有1dB的变化时,便能听出来差别,而在有+10dB的增加时,声音的响度将会加倍。

数码输出(Digital Output)

指可用外附的DAC来进行存贮或处理的数字信号输出,可以是电信号输出也可以是光学(光纤)输出。

偶极式音箱(Dipolar Loudspeaker)

跟双极式音箱在构造上相同,但前向及后向喇叭反相馈以信号,因此其声辐射图形呈倒“8"字形。多用作环绕声音箱。THX推荐环绕声音箱选用偶极式。

失真(Distortion)

指不需要的信号或是由设备所添加的对信号所产生的那些改变。

me2000 发表于 2007-8-11 11:56

DVD

指用作家庭娱乐用的一种视频光盘。DVD碟片需用DVD播放机来播放。声像将在配有相应硬件的大彩电的荧屏或配装有DVD-ROM的台式计算机的监视器上显示。

DVD-ROM

指与CD-ROM相类似,但比CD-ROM更好的只读光盘,专供电脑使用,DVD-ROM可以有不同的存贮容量,单面单层的4.7GB和双层双面的17GB。

DVD-Audio

DVD音频唱片,目前为1.0版本,以24bit/192kHz为标准。目前尚另有一些按DVD-Video(DVD-视频)制作的音乐DVD碟,但与DVD-Audio不是一码事。

DVD-R

DVD家族中的一员,为可一次写入多次读出数据的DVD,DVD-R可以是单层的(3.95GB),也可以是双层的(7.9GB)。

DVD-RW

由日本索尼公司和荷兰飞利浦公司及美国HP公司联合推出的一种存贮容量为3GB的可擦除和可重写的DVD光盘,与DVD-RAM类似。目前尚在研制容量达12GB,从而可录入5小时电视节目的DVD-RW。

DVD-RAM

供计算机专用的一种可擦除可重写的DVD光盘,规定的存贮容量为2.6GB(单层)和5.2GB(双层)。

Divx

由美国Circuit City公司推出的一种租赁DVD碟片的特殊方式,一次性付款后,可连续观看48小时并可不退回,但再看得另行付费。

静电扬声器(Electrostatic Speaker)

指用高电压产生的电场力去推动薄而轻的振膜从而发声的那类扬声器。

颤动(Fluffer)

指录音磁带或唱片因转速有快速的变化而使音调产生起伏的现象,多由运转不灵所引起。

频率(Frequency)

通常将频率高的声音称为高音,将频率低的称为低音,可听的声频范围在16Hz到20kHz之间。

前端(Front End)

多指声频系统中的信号源,如LP密纹慢转唱机或CD唱机,有时也指调谐器(收音头)中处理从无线接收到的信号的前级。

赫兹(Herz)

频率的单位,1赫兹表示信号每秒有一次周期性的变化。

家庭影院(Home Theater System)

家庭影院装置系一种性能优异的视听器材的组合,它用来在家里营造出类似于在影剧院中观看演出时的那种声画感受。虽然目前大多数的影视器材,尤其是电视机的画质还不完全理想,但在投入一定数额的财力后,却可在音频方面获得甚为良好的音响效果。

MD机(Minidisc)

日本索尼公司推出的一种可录音74分钟,形状与计算机软盘相似,而尺寸为64mm的磁光盘机,MD磁光盘有预录型和可录型两类。

独立单声道功放(monobloc)

指完全独立的单声道功率放大器,因此,双声道立体声系统得用二台这种单独的功放。其好处是通道间完全没有交连之类干拢。

动圈式(MC)唱头

这种唱头将相对于固定磁铁作运动,以产生信号,不过输出比动磁(MM)式唱头的低些。

动磁式(MM)唱头

指相对于固定线圈作运动以产生信号的小型磁铁式唱头。

丽音(Nicam)

指音质与CD相当的一种电视伴音播送程式。

欧姆(Ohm)

对电流所产生的阻力的计量单位,音箱的阻抗值便是用欧姆来测量的。通常,音箱的阻抗越低,便越难于推动。

过取样(Oversampling)

用于DAC系统,当将取样频率升高时,转换电路的工作便更易于进行,且辅助电路也更易于滤去那些不需要的信号。

无源(Passive)

指那些不会将信号予以放大且引入的失真也极小的电路或器件。

唱头放大器(Phono amplifier)

由于LP唱机的唱头输出的信号电平要比CD唱机和磁带录音机的输出为低,因此,需要加一级专门的多半带有频率均衡的前级放大器,即唱头放大器。过去许多前置放大器或合并式功放中皆专门设有这样的放大器,但因LP逐渐退出市场,目前的放大器中已少备有这样的输入级。

量化(Quantization)

指数字声频信号中,用来表现各种不同幅度电平可能值的那些数字。

取样率(Sampling rate)

指数字录音机或播放机对信号取样的快慢程度,象CD唱机、DCC数字录音机和MD磁光盘机的取样率便选定为44.1kHz,即每秒44100个取样,而DAT数字录音机的取样率则选为48kHz或44.1kHz,DAB数字音频广播则采用32kHz的取样率。取样率决定了数字系统所能记录的最高频率,因此,目前正在研究高取样率的方式。如日本先锋公司正在开展的将取样率提高到96kHz的系统。另外,DVD-Audio也采用了96kHz的高取样率。

屏蔽(Shielding)

指为使导线或设备能与干扰隔开而采取的一些措施。

超低音音箱(Subwoofer)

指用于重放那些深沉的而由普通小型音箱所无法予以重放出来的低频段的特制音箱。

唱臂(Tonearm)

为唱机的一部分,其上装有唱头。

瞬态(Transient)

指乐曲(特别是打击乐)中那些短暂而有爆发性的声音,通常,这些声音是难于准确重放出来的。

三线分音(推动)(Triamping/Triwiring)

指与双线分音(biwiring)及双功放推动(biamping)相类似的一种功放与音箱的连接方式,不过此时需使用三对喇叭线/或三台功放,而且仅适用于三分频并带相应输入端子的音箱。

抖晃(Wow)

指录音机或录音座转速的缓慢变化所导致产生的不稳定的畸形声音。

AAD

指录音及后期制作皆为模拟(A)方式,而只有制片使用数字(D)方式的CD唱片制作。

A/B试听比较(A/B comparison)

指对两种不同的音乐重放方式进行的反复试听比较。

绝对极性(absolute polarity)

在用绝对极性正确的音响系统播放绝对极性正确的录音制品时,音箱所产生的正向声压便会和原始声音的

正向声压一致。绝对极性不对时,便会有180°的相位差。对于有些乐器,有些人是能听出绝对极性的正确与否的。

电源净化器(AC line-conditioner)

指专门用来滤去交流供电电源中的噪声和防止音响器材受到电压峰值和浪涌损害的一种音响辅助器材。有些电源净化器甚至还可用来防止闪电的损伤。其实,电源净化器便是一种特别设计和制作的滤波器。

吸声材料(acoustic absorbed)

指任何一种能够吸收声波的材料,比如地毯、窗帘以及盖以厚实布套的家俱等等。

me2000 发表于 2007-8-11 11:57

声扩散器(acoustic diffuser)

指任何能够扩散声波的材料或器件。

声反馈(acoustic feedback)

音箱发出的声音会使LP唱盘、话筒等拾音设备产生振动,此振动又被变换为电信号,并再次由音箱重放出来。在这种反馈过程中,振动因自身的反馈而会越来越加强。会场中的扩音设备因音量过大而发出的啸叫,便是这种声反馈。

吸声板(acoustic panel absorber)

指利用隔板作用来吸收从低频到中频的一种吸声器材。当有声波射到吸声板上时,吸声板便会振动,从而将声能变换为板中小部分的热能。

声学(acoustics)

指专门研究声音的一门科学。也用于指听音场所对声音的吸收反射特性,如“这间听音室的声学特性良好”。

交流同步电机(AC synchronous)

指转速由所加交流电的频率确定的那类电动机。大多用于皮带传动的电唱盘中。

AC-3

杜比数字(DD)5.1声道数字环绕声格式原先的叫法。

有源分频网络(active crossover)

指可将声频信号中的低频、中频和高频在放大之前便加以分割而分别加到各自的发音单元去的一种有源电子电路。虽然有源分频网络多用于超低音音箱中,但在多声道系统中,也可单独使用有源分频网络。

有源超低音音箱(active subwoofer)

指专门用于重放低频、并由内置功率放大器来驱动的那类音箱。

ADD

指CD唱片按模拟方式录音(A),而编辑和制片则均采用数字(D)方式。

模拟/数字变换器(ADC)

将模拟信号变换为数字信号的电路。

邻台选择性(adjacent-channel selectivity)

指接收调谐器能够选择所欲收听的电台并抑止邻近电台干扰的能力。

隔台选择(alternate-channel selectivity)

指接收调谐器能够抑止与所欲接收的电台相隔为二个台的其它电台的干扰的能力。

AES/EBU数字接口(AES/EBU interface)

一种传送数字音频信号的专业接口,AES/EBU信号线为使用XLR插头的平衡传输线。此外,也在某些消费电子产品中使用。是根据美国AES(声频工程协会)和EBU(欧洲广播联盟)来命名的。

逼人感(aggressive)

用于表示象要把音乐给抛投到聆听者面前的那种前推型演出的声学术语。

空气感(air)

用于表示高音的开阔,或是声场中在乐器之间有空间间隔的声学术语。此时,高频响应可延伸到15kHz-20kHz。反义词有“灰暗(dull)”和“厚重(thick)”。

气悬式唱臂(air-bearing tonearm)

指LP电唱盘的唱臂系用空气垫来支撑的一种唱臂。

气悬式电唱盘(air-bearing turntable)

指唱盘系由空气垫来托起的那种唱盘。

环绕感(ambience)

也称包围感。指电影伴音所产生的那种有一定规模和空间的包围感。通常是由环绕音箱来营造的。

安培(ampere)

电流的计量单位,用A表示。

解析(analytical)

指音响器材能巨细无遗的再现录音制品中的每一细节,但却用的是错误的方式,此种解析方式极缺乏音乐味。

模拟(analog)

指模拟信号的电压变化是对声波的一种模拟,也即电压会随原有声学波形而连续的变化。与在二进位中用0和1来表示的音频或视频信号的数字信号相对。

图像变形(anamorphic)

指影片或视频的宽屏幕图像在水平方向上用透镜或数字处理的方法加以“压窄”,以便能适应于标准的4∶3的幅形比。重放时,则通过“反压窄”将图像原有的幅形比予以恢复。图像变形的格式可在不牺牲分辨率的情况下,提供正确的幅形比。

消声(anechoic)

字面上讲便是“无回波”的意思。

消声室(anechoic chamber)

指一间没有反射的房间。在消声室的墙壁上均铺设得有吸声性能良好的吸声材料。因此,室内便不会有声波的反射。消声室是专门用来测试音箱、喇叭单元等。

清晰(articulate)

指表示音响器材能够清晰的分辨音调的声学术语。

防滑调整(anti-state adjustment)

指加装在唱臂上用于调整加在唱臂上的力,从而抵消唱臂会自然内侧滑动的倾向。

幅形比(aspect ratio)

也称宽高比,即显示荧屏上画面的宽度与高度的比值。标准电视的幅形比为4∶3(1.33∶1),而宽屏幕的电视以及HDTV高清晰度电视的幅形比则为16∶9(1.78∶1)。

ATRAC

指自适应变换声学编码(adaptive transform acoustic coding),系日本索尼公司在其推出的MD磁光盘机中采用的一种低比特率数据压缩编码技术。

音响爱好者(audiophile)

俗称“音响迷”或“发烧友”,指对重放音乐的音质极为看重的一些人。。

音响狂(audiophile nervosa)

指那些总在不停地捣鼓音响器材而不大能尽情去欣赏音乐一味只对音响痴迷的人。

A/V

为Audio(音响)与Video(视频)的缩写,指兼有视听特性的那些影音产品。

A/V输入(A/V input)

指既设置得有音频又设置有视频插座的A/V功放接收机或A/V前置放大器的输入端。

A/V回路(A/V loop)

指所用A/V功放接收机和A/V前置放大器上安装的那些A/V输入与A/V输出对,系用于跟既能录音又能播放音频和视频信号的A/V器材连接的。比如,一台录像机便能跟A/V功放接收机或A/V前置放大器的A/V回路连接。

A/V前置放大器(A/V preamplifier)

也称“A/V控制器”,是用来控制音量,选择节目源和完成环绕声解码功放的一种音响器材。

A/V前置放大器/调谐器(A/V preamplifier/turner)

指在同一机箱内装有AM(调幅)或FM(调频)接收调谐器的A/V前置放大器。

A/V功放接收机(A/V receiver)

为家庭影院系统的心脏部分。负责接收由节目源送来的信号,选择需要观看和聆听的信号,控制重放的音量,完成环绕声解码,收听电台节目,并将选定的信号予以放大,以便能推动家庭影院的成套音箱。也称为“环绕声接收机”。

me2000 发表于 2007-8-11 11:58

方位角(azimuth)

在磁带录音机中指录放磁头和磁带行进方向之间的夹角,理想时应为90°;在LP电唱盘中则指针臂同唱片表面之间的角度。

障板(baffle)

指在上边装有一些发音单元的音箱的前面板。

平衡(balance)

指在音频频谱的高段和低段之间在相对响度上所存在的客观关系;也指双声道立体声左声道和右声道之间的信号的相同(平衡)。

平衡连接(balanced connection)

指音响器材间的一种连接方式,在单根电缆中有3根导线,一根用来传送音频信号,另一根用于传送极性相反的音频信号,而另一根则为地线。

香蕉插座(banana jack)

指装于音箱和功率放大器上用于和音箱线的香蕉插头连接的一种小型圆状插座。

香蕉插头(banana plug)

普遍装于音箱线两端的供插入香蕉插座的一种插头。

带宽(band width)

指音响装置能够处理或通过的一段频率范围。比方说,杜比环绕声的环绕声道的带宽便是100Hz-7kHz。环绕声道只通过频率在100Hz(低音)和7kHz(高音的低段)之间的频率。人耳能听到的频率范围为20Hz-20kHz。在谈到电气或声学器材的带宽时,往往指-3dB之间的频率范围。

低音(bass)

指在音频低段的声音,通常低于500Hz(另一说则指低于160Hz)。

低频延伸(bass extension)

指音响器材所能重放的最低频率。系用于测定在重放低音时音响系统或音箱所能下潜到什么程度的尺度。比方说,小型超低音音箱的低频延伸可以到40Hz,而大型超低音音箱则下潜到16Hz。

低音管理(bass management)

指A/V功放接收机或A/V前置放大器中的综合控制电路,系用于确定应该给相应的音箱送去多少低频信号。

倒相式音箱(bass reflex)

也称倒相式开孔箱,系在音箱面板上开有倒相孔(槽)的一类音箱。由于开有孔,箱内的声音便可以辐射到外面来。倒相式音箱比密闭式音箱的低频延伸要好些,但低音往往不那么结实紧凑。比较“无限障板”(infinite baffle)

双路功放推动(bi-amping)

指用两台功率放大器去推动同一音箱的一种特殊连接方式,系用一台功率放大器去推动低音单元;另用一台功率放大器去推动中音和高音单元。

大屏幕(big screen)

指直观式彩电或背投式投影电视中的大屏幕。通常,屏幕的对角线尺寸大都在40英寸以上。

特制立体声录音(binaural recording)

指有意将录音话筒装在仿真人头的耳通道内的一种特殊录音方式。由于仿真人头的物理结构,在录音中将包含有一些特别的空间信息。当用耳机去听这类录音制品时,便会产生不同于真实情况但又甚为奇妙的三维空间感。

接线柱(binding post)

指装于功率放大器和音箱上专供与音箱线连接的接线端子。

双极式音箱(bipolar speaker)

指向前和向后等同时辐射声波的一类音箱。和偶极式音箱不同,双极式音箱向前和向后辐射的声波是同相的。

双极晶体管(bipolar transistor)

指在音频电路中使用得非常普遍的一种晶体管。双极则源于电流系在两种半导体材料中流过的关系。双极晶体管根据工作电压的极性而可分为NPN型或PNP型。

比特(bit)

二进制数字的基本单位。通常取0或1两种状态之一。比特数越多,表达摸拟信号就越为精确,对音频信号的还原也越好。

比特率(bit rate)

指数字音频或数字视频信号每秒所存贮或传送的比特数。例如,CD光盘每一声道的比特率为705600kbs,而杜比数字(DD)的5.1声道的比特率则为384kbs。高些的比特率往往意味着可以获得更好些的音质。

双线分音(bi-wiring)

指对每一支音箱皆用二组音箱线去连接的一种接线方式。用一组(一对)音箱线去跟音箱中的低音单元输入连接;而另一组音箱线则跟音箱的高音单元连接。只有那些专门设有两对输入端子的音箱才能按双线分音连接。

发飘(blanketed)

指高音不足,尤似在音箱前边悬挂了张毛毯之类吸声材料而将声音给吸得空虚了。

黑电平(baack level)

指在经过一定校准的显示装置上,没有一行光亮输出的视频信号电平。

乏力(bleached)

用于表示那些特别注重器乐高次谐波而不大注意低次谐波和基频的那类音响器材的发声特性的声学术语。苍白的声音听来会显得过于明亮,单薄而缺乏温暖感。

空气感(bloom)

用于表示在乐器的声像四周有空气环绕的声学术语。

轰隆声(bloomy)

指在125Hz左右的低音过重,特别是在相当宽的一段频率范围内。系由于对低频或低频谐振的阻尼不够所引起。

冒牌货(boutique brand)

指那些表面上看似乎是high-end的音响,但实际上却只是虚有其表而机箱内皆装以劣质元器件的伪劣产品。

渲染(bloated)

指250Hz一带的低音中段过强。对低频以及低频的谐振阻尼不够。参看“过粗”(tubby)。

含混(blurred)

指瞬态响应差,立体声声像模糊,凝聚欠佳。

闷声(boxy)

指听到的音乐像从封闭的箱子中发出来的而有些共鸣。有时则指在250-500Hz一段有些过强。

煲机(break-in)

指新买回的音响器材得通电一段时间后才会让重放的音质变好。

桥接(bridging)

指为增加输出功率而将功率放大器和音箱作一种特别的连接。桥接便是将双声道的立体声放大器改接为单路的功率放大器。由其中一路放大器去负责放大波形的正半周,而由另一路去放大波形的负半周,音箱则像两路放大器通道之间的“桥”。桥接时需要用二台同样的双声道立体声放大器。

明亮(bright)

指突出4kHz-8kHz的高频段,此时谐波相对强于基波。明亮本身并没什么问题,现场演奏的音乐会皆有明亮的声音,问题是明亮得掌握好分寸,过于明亮(甚至啸叫)便让人讨厌。

辉度(brightness)

对于视频则专指视频显示器画面上所产生的光量。

辉亮信号(brightness signal)

用"Y"表示,视频信号的辉亮信号包含所有的显示信息,彩色视频信号则为亮度和色度信号的综合。

尖剌(brittle)

用于表示使得乐器的音色听来刺耳的中频或高频的声特性的声学术语。

缓冲(buffer)

指用于将音响或电路级加以隔开的电路。前置放大器便是音源和功率放大器之间的缓冲,因为前置放大器为音源减轻了推动功率放大器的负担。

直通试听法(bypass test)

为一种对音响器材进行试听的方法。此时将被测试的音响器材或是接入或是不接入信号的行程中,从而可对其声特性作出评判。

校正(calibration)

指为使音响或A/V影视器材的工作能够正常而进行的精确调整。在音响系统中,校正包括调定各个声道的电平;而在视频装置中,校正便是调好色彩、亮度、色度、对比度及其它参数。

针臂(cantilever)

指由LP电唱盘的唱头端伸出并在其上边装有唱针的细管。

容抗(capacitive reactance)

指电容器所呈现的阻止低频通过但却让高频得以通过的一种特性。容抗使电容器成为一种和频率有依从关系的阻抗。正是利用电容器的容抗才将电容器接在高音单元上,让高音通过而不让低音通过。

电容器(capacitor)

一种存贮电荷的电子元器件。在功率放大器中的存贮电容器系用于存贮能量;而在直流供电电源中的滤波电容器,则是用来滤去交流成分的;在放大器电路中的耦合电容器则是用来通过交流的音频信号和隔断直流的。

俘获比(capture ratio)

为接收调谐器的技术指标。指在调谐器锁定一个信号较强的电台而抑止一个信号弱些的电台之前,所需的两个电台信号强度之差的分贝值。俘获比越低,调谐器的性能便越好。

唱头消磁器(cartridge demagnetizer)

指专门用于消除唱头内的金属部分的杂散磁场的一种器材。

CAV LD激光影碟(CAV laserdisc)

指按恒角速度(CAV)录制的LD影碟。不论激光拾取器在什么位置上读取信号,影碟将始终以恒速旋转。也称为“标准格式”的LD影碟。其每面可以录30分钟的节目。参看“恒线速” (CLV)。

CD激光唱片(compact disc)

指由日本索尼公司和荷兰飞利浦公司联合研制成的一种直径12cm(个别为8cm)可录74分钟音乐的光盘。

CD-R可录光盘

(CD Recordable)

指可以录入数字音频的光盘。CD-R为一次录入的光盘。录入后便无法抹掉。

CD-ROM只读型光盘

指用于存储计算机数据的一种只读型光盘。

CD-RW可录可抹光盘(CD-Rewritable)

一种可录入可抹掉而反复重录的CD光盘。但现有大多数的CD唱机却是无法用于播放CD-RW光盘的。

中心通道(center channel)

在多声道的音响系统中,摆放在观看室的中间,并位于左右前置音箱当中的中置音箱便是用于重放中心通道中的信息的。在中心通道中几乎皆为影片中的对白。

中心通道模式(center-channel mode)

指A/V功放接收机和A/V前置放大器的中心通道的工作设置方式。

中置音箱(center-channel speaker)

指家庭影院系统中装于视频监视器的顶部,下面或后面的一种音箱。是用于重放中心通道送来的人声对白之类信息以及其它同荧屏上的动作有关的一些声音。

me2000 发表于 2007-8-11 11:59

消费电子产品大展(CES)

指每年一度于年初在美国拉斯维加斯举办的国际消费电子产品大展。

通道平衡(channel balance)

指音响系统中或个别音响器材中左和右声道的相对电平或音量。也用于表示杜比编码信号中左和右信号的相对差值。为了获得最好的杜比解码效果,有些A/V功放接收机和A/V前置放大器还可以对通道平衡进行调整。

通道隔离(channel separation)

系用于衡量一个声道跟其它声道之间的隔离程度的尺度。在家庭影院系统中,当通道隔离不够时,一个声道中的声音便会“串入”另一个声道。比较典型的例子便是杜比环绕声中,前置主声道中的声音会“串入”环绕声道。声道隔离好时,声像定位便会更为准确。

胸音(chesty)

指音箱的一种声染色,就像歌唱家因胸腔过大而放声洪量的那种声音。系由于在125~250Hz一段的低频响应上有凸起所引起的。

色度(chrominance或chroma)

指视频信号的彩色部分。色度信号中包含有色彩和色调信息,但却没有亮度信息。

噗嗤声(chufing)

指倒相式音箱在以高电平重放低音时所发出的那种噗嗤声。原因是此时有大量的空气在音箱开孔处通过。

甲类放大(class-A)

也称A类放大。为放大器的一种工作状态。此时晶体管或电子管放大器将会对整个的音频信号进行放大。

乙类放大(class-B)

也称B类放大。为放大器的一种工作状态。此时一路晶体管或电子管放大器将会放大音频信号的正半部分,而另一路晶体管或电子管放大器则放大信号的负半部分。

甲乙类放大(class AB)

也称为AB类放大。放大器的一种工作状态。此时放大器的输出级在输出功率为低电平时便按甲类放大状态,而在输出功率为高电平时便转换为乙类放大。

丁类放大(class D)

也称D类放大或数字式放大器。系利用极高频率的转换开关电路来放大音频信号的。具有效率高,体积小的优点。许多功率高达1000W的这类数字式放大器,体积只不过像盒VHS录像带那么大。这类放大器不适宜于用作宽频带的放大器,但在有源超低音音箱中却有较多的应用。

限幅(clipping)

当要求放大器输出超过其所允许的输出功率时,便会使输出的音频波形的顶部和底部变得平坦。就像将峰值给削平了似的。限幅会引入大量的失真。让人在音乐的峰值时听到有嘎吱嘎吱的响声。

封闭(close-in)

指声音的不够开阔,不大柔和和缺少空气感及细节。多因在频率高于10kHz时有了衰减的缘故。

CLV LD激光影碟(CLV laserdisc)

指按恒定线速度录制的LD激光影碟。取决于激光拾取器在碟片上的读取位置,LD碟片的转速将会改变。当激光拾取器在碟片外沿读取时,LD影碟的转速相当对较慢;当拾取器沿碟片内径读取时,转速便会加快。因之,从激光拾取器看来,线速度系保持不变的。也称为“延长播放”影碟,因为碟片的单面便可存贮1个小时的视频节目。

同轴电缆(coaxial Cable)

指一种内部的导体被隔离层的编织体所包围的一种电缆。

同轴数字输出(coaxial digital output)

指在CD机、DVD机等数字录音源设备上安装的用于输出数字音频的RCA插座。可以用同轴数字信号线来跟其它音响器材连接。

同轴发音单元(coaxial driver)

指将一个发音单元(通常为高音单元)装在另一发音单元(通常为中音单元)内部的那类扬声器。

编码正交频分复用(COFDM)

原文为 coded orthogonal frequency division multiplex,系一种信道编码和调制的方法。在欧洲,主要用于DTV数字电视和DAB数字音频广播。用于将相邻的每部分信号尽可能的分离开来,并分别在可多达1536个离散的频率上传送,因而可减少传输差错和多径传波之类干扰。

相参性(coherence)

指对音乐能够有一总体感觉而不是由许多单独部分所组成的那种感受。

me2000 发表于 2007-8-11 11:59

声染色(coloration)

指在音响系统中,由某一音响器材所引起的声音的改变。有声染色的音箱便不能精确地重放出加给音箱的声信号。比如,有声染色的音箱可能会重放出过多的低音,而在高音方面则有所欠缺。

梳状滤波(comb filtering)

指在频率响应上出现的一系列相间的深深的峰值和谷值的现象。通常,当直达声和经听音室内音箱两侧的侧墙所反射而稍许有些延迟的反射声合加在一起时,便会产生这种梳状滤波。

共模抑止(common-mode rejection)

当将平衡信号加到差分放大器时,便只将平衡信号之间的相位差给放大了。任何两个相位共同的噪声(共模噪声)皆被差分放大器所抑止.

音响知识完全手册

音箱是将电信号还原成声音信号的一种装置,还原真实性将作为评价音箱性能的重要标准。有源音箱就是带有功率放大器(即功放)的音箱系统。把功率放大器和扬声器发声系统做成一体,可直接与一般的音源(如随身听、CD机、影碟机、录像机等)搭配,构成一套完整的音响组合。有了有源音箱,就无需另购功率放大器,不再为合理选配功放、音箱而发愁,操作简便,其极高的性能价格比,为工薪阶层所普遍接受。

按照发声原理及内部结构不同,音箱可分为倒相式、密闭式、平板式、号角式、迷宫式等几种类型,其中最主要的形式是密闭式和倒相式。密闭式音箱就是在封闭的箱体上装上扬声器,效率比较低;而倒相式音箱与它的不同之处就是在前面或后面板上装有圆形的倒相孔。它是按照赫姆霍兹共振器的原理工作的,优点是灵敏度高、能承受的功率较大和动态范围广。因为扬声器后背的声波还要从导相孔放出,所以其效率也高于密闭箱。而且同一只扬声器装在合适的倒相箱中会比装在同体积的密闭箱中所得到的低频声压要高出3dB,也就是有益于低频部分的表现,所以这也是倒相箱得以广泛流行的重要原因。

2、功率

音箱音质的好坏和功率没有直接的关系。功率决定的是音箱所能发出的最大声强,感觉上就是音箱发出的声音能有多大的震撼力。根据国际标准,功率有两种标注方法:额定功率(RMS:正弦波均方根)与瞬间峰值功率(PMPO功率)。前者是指在额定范围内驱动一个8Ω扬声器规定了波形持续模拟信号,在有一定间隔并重复一定次数后,扬声器不发生任何损坏的最大电功率;后者是指扬声器短时间所能承受的最大功率。美国联邦贸易委员会于1974年规定了功率的定标标准:以两个声道驱动一个8Ω扬声器负载,在20~20000Hz范围内谐波失真小于1%时测得的有效瓦数,即为放大器的输出功率,其标示功率就是额定输出功率。通常商家为了迎合消费者心理,标出的是瞬间(峰值)功率,一般是额定功率的8倍左右。 试想同是采用PHILIPS的TDA1521功放芯片(最大的额定功率30W,THD=10%时),而某些产品上标称360W,甚至480WP.M.P.O.,这可能吗?有意义吗?所以在选购多媒体音箱时要以额定功率为准。音箱的功率由功率放大器芯片的功率和电源变压器的功率两者主要决定,考虑到其他一些因素,可以算出如果变压器的额定功率是100W的话,它实际能顺利带动的功放芯片的功率要在45W以下,所以通过算音箱变压器与功放的功率关系也可以验证音箱的实际额定功率是否能达到标称值。音箱的功率不是越大越好,适用就是最好的,对于普通家庭用户的20平米左右的房间来说,真正意义上的60W功率(指音箱的有效输出功率30W×2)是足够的了,但功放的储备功率越大越好,最好为实际输出功率的2倍以上。比如音箱输出为

30W,则功放的能力最好大于60W,对于HiFi系统,驱动音箱的功放功率都很大。

3、频率范围与频率响应

前者是指音响系统能够重放的最低有效回放频率与最高有效回放频率之间的范围;后者是指将一个以恒电压输出的音频信号与系统相连接时,音箱产生的声压随频率的变化而发生增大或衰减、相位随频率而发生变化的现象,这种声压和相位与频率的相关联的变化关系(变化量)称为频率响应,单位分贝(Db)。

音响系统的频率特性常用分贝刻度的纵坐标表示功率和用对数刻度的横坐标表示频率的频率响应曲线来描述。当声音功率比正常功率低3dB时,这个功率点称为频率响应的高频截止点和低频截止点。高频截止点与低频截止点之间的频率,即为该设备的频率响应;声压与相位滞后随频率变化的曲线分别叫作“幅频特性”和“相频特性”,合称“频率特性”。这是考察音箱性能优劣的一个重要指标,它与音箱的性能和价位有着直接的关系,其分贝值越小说明音箱的频响曲线越平坦、失真越小、性能越高。如:一音箱频响为60Hz~18kHz +/- 3dB。这两个概念有时并不区分,就叫作频响。

从理论上讲,20~20000Hz的频率响应足够了。低于20Hz的声音,虽听不到但人的其它感觉器官却能觉察,也就是能感觉到所谓的低音力度,因此为了完美地播放各种乐器和语言信号,放大器要实现高保真目标,才能将音调的各次谐波均重放出来。所以应将放大器的频带扩展,下限延伸到20Hz以下,上限应提高到20000Hz以上。对于信号源(收音头、录音座和激光唱机等)频率响应的表示方法有所不同。例如欧洲广播联盟规定的调频立体声广播的频率响应为40~15000Hz时十/—2dB,国际电工委员会对录音座规定的频率响应最低指标:40~12500Hz时十/—2.5十/—4.5dB(普通带),实际能达到的指标都明显高于此数值。CD机的频率响应上限为20000Hz,低频端可做到很低,只有几个赫兹,这是CD机放音质量好的原因之一。

但是,构成声音的谐波成分是非常复杂的,并非频率范围越宽声音就好听,不过这对于中低档的多媒体音箱来讲还是基本正确的。在标注频率响应中我们通常都会看到有“系统频响”和“放大器频响”这两个名词,要知道“系统频响”总是要比“放大器频响”的范围小,所以只标注“放大器频响”则没有任何意义,这只是用来蒙骗一些不知情的消费者的。现在的音箱厂家对系统频响普遍标注的范围过大,高频部分差的还不是很多,但在低音端标注的极为不真实,国外的名牌HiFi(高保真)音箱也不过标注4、50Hz左右,而国内两三百的木质普通音箱居然也敢标注这个数据,真是让人笑掉大牙了!所以敬告大家低频段声音一定要耳听为真,不要轻易相信宣传单上的数值。多媒体音箱中的音乐是以播放MP3或CD的音乐、歌曲、游戏的音效、背景音乐以及影片中的人声与环境音效为主的,这些声音是以中高音为多,所以在挑选多媒体音箱时应该更看中它在中高频段声音的表现能力,而不是低频段。若真的追求影院效果,那么一只够劲的低音炮绝对能够满足你的需求。

4、响度

声音的强弱称为强度,它由气压迅速变化的振幅(声压)大小决定。但人耳对强度的主观感觉与客观的实际强度并不一致,人们把对于强弱的主观感觉称为响度,其计量单位也为分贝(Db),它是根据1000Hz的声音在不同强度下的声压比值,取其常用对数值的 l/10而定的。取对数值的原因是由于强度与响度的增加不是成正比关系,而是真数与对数的关系!例如声音强度大到10倍时,听起来才响了一级(10dB),强度大到100倍时听起来才响了两级(20dB)。对于1000Hz的声音信号,人耳能感觉到的最低声压为2×10E-5Pa,把这一声压级定为0dB,当声压超过130dB时人耳将无法忍受,故人耳听觉的动态范围为0~130dB。

人对强度相等、频率不同声音感觉是不同的;声压级越高,人的听觉频率特性越平直;声压级越低,人的听觉频率范围越小;频率 f<16~20Hz以及 f>18~20KHz的声音,不论声级多高,人耳都是听不到的。故人耳的听觉频率为20Hz~20KHz,这个频带叫音频或声频;不论声压高低,人耳对3KHz~5KHz频率的声音最为敏感。

大多数人对信号声级突变3dB以下时是感觉不出来的,因此对音响系统常以3dB作为允许的频率响应曲线变化范围。

5、失真度

有谐波失真、互调失真和瞬态失真之分。谐波失真是指声音回放中增加了原信号没有的高次谐波成分而导致的失真;互调失真影响到的主要是声音的音调方面;瞬态失真是因为扬声器具有一定的惯性质量存在,盆体的震动无法跟上瞬间变化的电信号的震动而导致的原信号与回放音色之间存在的差异。它在音箱与扬声器系统中则是更为重要的,直接影响到音质音色的还原程度的,所以这项指标与音箱的品质密切相关。这项常以百分数表示,数值越小表示失真度越小。普通多媒体音箱的失真度以小于0.5%为宜,而通常低音炮的失真度普遍较大,小于5%就可以接受了。

me2000 发表于 2007-8-11 11:59

6、音箱的灵敏度(单位Db)

音箱的灵敏度每差3dB,输出的声压就相差一倍,一般以87 Db为中灵敏度,84 Db以下为低灵敏度,90 Db以上为高灵敏度。灵敏度的提高是以增加失真度为代价的,所以作为高保真音箱来讲,要保证音色的还原程度与再现能力就必须降低一些对灵敏度的要求。但不能反过来说,灵敏度高的音箱音质一定不好而低灵敏度的音箱一定就好。灵敏度低的音箱功放难以推动(要求功放的贮备功率较大)。所以灵敏度虽然是音箱的一个指标,但是它与音箱的音质音色无关。

7、阻抗

它是指扬声器输入信号的电压与电流的比值。音箱的输入阻抗一般分为高阻抗和低阻抗两类,高于16Ω的是高阻抗,低于8Ω的是低阻抗,音箱的标准阻抗是8Ω。在功放与输出功率相同的情况下,低阻抗的音箱可以获得较大的输出功率,但是阻抗太低了又会造成欠阻尼和低音劣化等现象。所以这项指标虽然与音箱的性能无关,但最好还是不要购买低阻抗的音箱,推荐值是标准的8Ω。耳机的阻抗一般是高阻抗的——32Ω很常见。功放的阻抗一般可标为等值阻抗,比如4Ω下130W的输出,大概相当于等值的80W的输出。有一个容易与之混淆的名词叫做“阻尼系数”,这是指扬声器阻抗除以放大器源的内阻,范围大约是25~1000。扬声器纸盆在电信号已经消失后还要振荡多次才能完全停止摆动,而线圈发出的电压产生电流和磁场可以阻止这种寄生运动,这就是阻尼。电流的幅度也就是阻尼的效果取决于此电流流经放大器输出级的内阻,这一电阻要远低于扬声器的额定阻抗,典型值为0.1Ω,但由于扬声器音圈的串联电阻和分频网络的串联电阻的存在,阻尼系数难以做到50。

8、信噪比

是指音箱回放的正常声音信号与无信号时噪声信号(功率)的比值。也用 Db表示。例如,某磁带录音座的

信噪比为50dB,即输出信号功率比噪音功率大50dB。信噪比数值越高,噪音越小。国际电工委员会对信噪比的最低要求是前置放大器大于等于63dB,后级放大器大于等于86dB,合并式放大器大于等于63dB。合并式放大器信噪比的最佳值应大于90dB;收音头:调频立体声之50dB,实际上以达到70dB以上为佳;磁带录音座之56dB(普通带),但经杜比降噪后信噪比有很大提高。如经杜比 B降噪后的信噪比可达65dB,经杜比 C降噪后其信噪比可达72dB(以上均指普通带);CD机的信噪比可达90dB以上,高档的更可达l10dB以上。信噪比低时,小信号输入时噪音严重,整个音域的声音明显感觉是混浊不清,所以信噪比低于80dB的音箱不建议购买!而低音炮70 Db的低音炮同样原因不建议购买。

9、扬声器材质

低档塑料音箱因其箱体单薄、无法克服谐振,无音质可言(笨笨熊注:也不尽然,设计好的塑料音箱要远远好于劣质的木质音箱);木制音箱降低了箱体谐振所造成的音染,音质普遍好于塑料音箱。通常多媒体音箱都是双单元二分频设计,一个较小的扬声器负责中高音的输出,而另一个较大的扬声器负责中低音的输出。挑选音箱应考虑这两个喇叭的材质:多媒体有源音箱的高音单元现以软球顶为主(此外还有用于模拟音源的钛膜球顶等),它与数字音源相配合能减少高频信号的生硬感,给人以温柔、光滑、细腻的感觉。多媒体音箱现以质量较好的丝膜和成本较低的PV膜等软球顶的居多。低音单元它决定了音箱的声音的特点,选择起来相对重要一些,最常见的有以下几种:纸盆,又有敷胶纸盆、纸基羊毛盆、紧压制盆等几种,纸盆音色自然、廉价、较好的刚性、材质较轻灵敏度高,缺点是防潮性差、制造时一致性难以控制,但顶级HiFi系统中用纸盆制造的比比皆是,因为声音输出非常平均,还原性好;防弹布,有较宽的频响与较低的失真,是酷爱强劲低音者之首选,缺点是成本高、制作工艺复杂、灵敏度不高轻音乐效果不甚佳;羊毛编织盆,质地较软,它对柔和音乐与轻音乐的表现十分优异,但是低音效果不佳,缺乏力度与震撼力;PP(聚丙烯)盆,它广泛流行于高档音箱中,一致性好失真低,各方面表现都可圈可点。此外还有像纤维类振膜和复合材料振膜等由于价格高昂极少应用于普及型音箱中,就不谈了。扬声器尺寸自然是越大越好,大口径的低音扬声器能在低频部分有更好的表现,这是在选购之中可以挑选的。用高性能的扬声器制造的音箱意味着有更低的瞬态失真和更好的音质。普通多媒体音箱低音扬声器的喇叭多为3~5英寸之间。用高性能的扬声器制造的音箱也意味着有更低的瞬态失真和更好的音质。

10、音箱的结构与特点

音箱从结构形式上分,可以分为书架式和落地式,前者体积小巧、层次清晰、定位准确,但功率有限,低频段的延伸与量感不足,适于欣赏以高保真音乐为主的音乐爱好者,也是我们多媒体发烧友的首选;后者体积较大、承受功率也较大,低频的量感与弹性较强,善于表现滂沱的气势与强大的震撼力,但做得不好层次感与定位方面会略有欠缺。对于不同音乐的爱好者来讲,这也是在选购以前应该了解的重要内容。由于PC用家很少有具备放置大型落地箱的条件,所以小巧的桌面书架式音箱应该是多媒体有源音箱的首选。总的来说:只要功放模块设计合理,箱体越大,喇叭越大,声音越中听。

11、可扩展性

这是指音箱是否支持多声道同时输入,是否有接无源环绕音箱的输出接口,是否有USB输入功能等。低音炮能外接环绕音箱的个数也是衡量扩展性能的标准之一。普通多媒体音箱的接口主要有模拟接口和USB接口两种,其它如光纤接口还有创新专用的数字接口等不是非常多见,因此不多作介绍。

12、音效技术

硬件3D音效技术现在较为常见的有SRS、APX、 Spatializer 3D、 Q-SOUND、 Virtaul Dolby和

Ymersion等几种,它们虽各自实现的方法不同,但都能使人感觉到明显的三维声场效果,其中又以前三种更为常见。它们所应用的都是扩展立体声(Extended Stereo)理论,这是通过电路对声音信号进行附加处理,使听者感到声像方位扩展到了两音箱的外侧,以此进行声像扩展,使人有空间感和立体感,产生更为宽阔的立体声效果。此外还有两种音效增强技术:有源机电伺服技术(本质上利用了赫姆霍兹共振原理)、BBE高清晰高原音重放系统技术和“相位传真”技术,对改善音质也有一定效果。对于多媒体音箱来说,SRS和BBE两种技术比较容易实现效果很好,能有效提高音箱的表现能力。

me2000 发表于 2007-8-11 12:00

13、音调

指具有一特定且通常是稳定音高的信号,通俗的讲是声音听来调子高低的程度。它主要取决于频率,还与声音强度有关。频率高的声音人耳的反应是音调高而频率低的声音人耳的反应是音调低。音调随频率(Hz)的变化基本上呈对数关系。不同的乐器演奏同样频率的音符,音色虽然不同,但它们的音调是相同的,也就是演奏声音的基频是相同的。

14、音色

对声音音质的感觉,也是一种声音区别于另一种声音的特征品质。不同的乐器在发同一音调时,它们的色可以迎然不同。这是由于它们的基频频率虽相同,但谐波成分相差甚大。故音色不但取决于基频,而且与基频成整倍数的谐波密切有关,这就使每种乐器和每个人有不同的音色。

15、动态范围

声音中最强与最弱的比值,用 Db表示。例如一个乐队的动态范围为90dB,这意味着最弱部分的功率比最响部分的低90dB。动态范围是功率之比,与声音的绝对水平无关。如前所述,人耳的动态范围从0到130dB。自然界各种声音的动态范围的变化也是很大的。一般语言信号大约只有20~45dB,有些交响乐的动态范围可达30~130dB或更高。但由于一些因素的限制,音响系统的动态范围很少能达到乐队的动态范围。录音装置的内在噪音决定了可能录制的最弱音,而系统的最大信号容量(失真水平)限制了最强的音。一般把声音信号的动态范围定为100dB,故音响设备的动态范围能做到100dB,就很好了。

16、总谐波失真(THD)

指音频信号源通过功率放大器时,由于非线性元件所引起的输出信号比输入信号多出的额外谐波成分。谐波失真是由于系统不是完全线性造成的,我们用新增加总谐波成份的均方根与原来信号有效值的百分比来表示。例如,一个放大器在输出10V的1000Hz时又加上 Lv的2000Hz,这时就有10%的二次谐波失真。所有附加谐波电平之和称为总谐波失真。一般说来,1000Hz频率处的总谐波失真最小,因此不少产品均以该频率的失真作为它的指标。但总谐波失真与频率有关,因此美国联邦贸易委员会于1974年规定,总谐波失真必须在20~20000Hz的全音频范围内测出,而且放大器的最大功率必须在负载为8欧扬声器、总谐波失真小于1%条件下测定。国际电工委员会规定的总谐波失真的最低要求为:前级放大器为0.5%,合并放大器小于等于0.7%,但实际上都可做到0.1%以下:FM立体声调谐器小于等于1.5%,实际上可做到0.5%以下;激光唱机更可做到0.01%以下。

由于测量失真度的现行方法是单一的正弦波,不能反映出放大器的全貌。实际的音乐信号是各种速率不同的复合波,其中包括速率转换、瞬态响应等动态指标。故高质量的放大器有时还注明互调失真、瞬态失真、瞬态互调失真等参数。(l)互调失真(IMD):将互调失真仪输出的125Hz与lkHz的简谐信号合成波,按4:1的幅值输入到被测量的放大器中,从额定负载上测出互调失真系数。

(2)瞬态失真(TIM):将方波信号输入到放大器后,其输出波形包络的保持能力来表达。如放大器的转换速率不够,则方波信号即会产生变形,而产生瞬态失真。主要反映在快速的音乐突变信号中,如打击乐器、

钢琴、木琴等,如瞬态失真大,则清脆的乐音将变得含混不清。

(3)瞬态互调失真:将3.15kHz的方波信号与15kHz的正弦波信号按峰值振幅比4:1混合,经放大器后,新增加全部互调失真的产物有效值与原来正弦振幅的百分比。如放大器采用深度大回环负反馈,瞬态互调失真一般较大,具体反映出声音呆滞、生硬、无临场感;反之,则声音圆滑、细腻、自然。

17、立体声分离度

指双声道之间互相不干扰信号的能力、程度,也即隔离程度,通常用一条通道内的信号电平与泄漏到另一通道中去的电平之差表示。如果立体声分离度差,则立体感将被削弱。国际电工委员会规定的立体声分离度的最低指标, lKHz时大于等于40dB,实际以达到大干60dB为好;欧洲广播联盟规定的调频立体声广播的立体声分离度为>25dB,实际上能做到40dB以上。立体声通道平衡指的是左、右通道增益的差别,一般以左、右通道输出电平之间最大差值来表示。如果不平衡过大,立体声声像位置将产生偏离,该指标应小于1dB。

18、阻尼系数

是指放大器的额定负载(扬声器)阻抗与功率放大器实际阻抗的比值。阻尼系数大表示功率放大器的输出电阻小,阻尼系数是放大器在信号消失后控制扬声器锥体运动的能力。具有高阻尼系数的放大器,对于扬声器更象一个短路,在信号终止时能减小其振动。功率放大器的输出阻抗会直接影响扬声器系统的低频 Q值,从而影响系统的低频特性。扬声器系统的Q值不宜过高,一般在0.5~l范围内较好,功率放大器的输出阻抗是使低频 Q值上升的因素,所以一般希望功率放大器的输出阻抗小、阻尼系数大为好。阻尼系数一般在几十到几百之间,优质专业功率放大器的阻尼系数可高达200以上。

l9、等响度控制

其作用是低音量时提升高频和低频声。由于人耳对高频声、特别是低频声的听觉灵敏度差,要求在低音量时对高频和低频进行听觉补偿,即要求对低频有较大提升,对高频也有一定量的提升。换句话说,当音量减小时,信号中低频部分的减小较高频部分为少。等响度控制即满足此要求,等响度控制一般为8dB或10dB。

20、三维音场处理和环绕声

普通两只音箱为什么会使我们听到并不存在的好像是背后发出的声音呢?大家知道,立体电影就是眼睛产生的错觉而三维音场的产生离不开耳朵的错觉。种种硬件3D音效技术如SRS、虚拟杜比和软件3D技术如EAX、A3D等就是充分研究了人耳接受声响的原理后为降低成本而推出的新技术。本质上讲通过多音箱完成三维音场的效果比两只音箱虚拟出的声场好很多。所以环绕声应该以多音箱配置为主,它们的定位感和空间感强,下面我们来看看有哪几种真正的环绕声:

A 杜比定向逻辑(Dolby Pro-Logic)环绕声系统

4-2-4编码技术将左、中、 右和后侧四方面的音频信息经过编码记录在左右两个声道中; 放音时再通过解码器从左右声道中分解还原出原来这4个声道, 这4个声道通常称为:前置左声道、前置中间声道、前置右声道和后置环绕声道。 科学实验表明, 要获得身临其境的真实音响效果,必须在聆听者周围产生一个四面包围的声场环境,整个放声系统使用的声道数越多,聆听者的声场定位感就越强烈,身临其境的感受就越真实。根据目前一般家庭的视听环境,放声系统使用5个声道已能满足声场定位需要,因此,杜比定向逻辑环绕声系统大多使用5声道。从表面上看,5声道杜比定向逻辑环绕声功率放大器确实有5个功率输出端:前置左声道、中置声道、前置右声道、 环绕左声道(又称后置左声道)和环绕右声道(又称后置右声道),但杜比定向逻辑环绕声系统中解码器输出的环绕声信号其实是单声道的,5声道功率放大器中的左右两个环绕声道在功放内部是相互串联的

me2000 发表于 2007-8-11 12:01

功放音箱搭配4要素

功放与音箱配接四要素 功放与音箱配接讲究冷暖相宜、软硬适中,以实现整套器材还原音色呈中性,这仅是从艺术方面考虑。然而从技术方面考虑的要素有:

一、功率匹配

二、功率储备量匹配

三、阻抗匹配

四、阻尼系数的匹配

如果我们在配接时认识到上述四点,可使所用器材的性能得到最大、最充分的发挥。

功率匹配 为了达到高保真聆听的要求,额定功率应根据最佳聆听声压来确定。我们都有这样的感觉:音量小时、声音无力、单薄、动态出不来,无光泽、低频显著缺少、丰满度差,声音好像缩在里面出不来。音量合适时,声音自然、清晰、圆润、柔和丰满、有力、动态出得来。但音量过大时,声音生硬不柔和、毛糙、有扎耳根的感觉。因此重放声压级与声音质量有较大关系,规定听音区的声压级最好为80~85dB(A计权),我们可以从听音区到音箱的距离与音箱的特性灵敏度来计算音箱的额定功率与功放的额定功率。

功率储备量匹配

音箱:为了使其能承受节目信号中的猝发强脉冲的冲击而不至于损坏或失真。这里有一个经验值可参考:所选取的音箱标称额定功率应是经理论计算所得功率的三倍。

功放:电子管功放和晶体管功放相比,所需的功率储备是不同的。这是因为:电子管功放的过荷曲线较平缓。对过荷的音乐信号巅峰,电子管功放并不明显产生削波现象,只是使颠峰的尖端变圆。这就是我们常说的柔性剪峰。而晶体管功放在过荷点后,非线性畸变迅速增加,对信号产生严重削波,它不是使颠峰变圆而是把它整齐割削平。有人用电阻、电感、电容组成的复合性阻抗模拟扬声器,对几种高品质的晶体管功放进行实际输出能力的测试。结果表明,在负载有相移的情况下,其中有一台标称100W的功放,在失真度1%时实际输出功率仅有5W!由此对于晶体管功放的储备量的选取:

高保真功放:10倍

民用高档功放:6~7倍

民用中档功放:3~4倍

而电子管功放则可以大大小于上述比值。

对于系统的平均声压级与最大声压级应留有多少余量,应视放送节目的内容、工作环境而定。这个冗余量最低10dB,对于现代的流行音乐、蹦迪等音乐,则需要留有20~25dB冗余量,这样就可使得音响系统安全,稳定地工作。

阻抗匹配

它是指功放的额定输出阻抗,应与音箱的额定阻抗相一致。此时,功放处于最佳设计负载线状态,因此可以给出最大不失真功率,如果音箱的额定阻抗大于功放的额定输出阻抗,功放的实际输出功率将会小于额定输出功率。如果音箱的额定阻抗小于功放的额定输出阻抗,音响系统能工作,但功放有过载的危险,要求功放有完善的过流保护措施来解决,对电子管功放来讲阻抗匹配要求更严格。

阻尼系数的匹配

阻尼系数KD定义为:KD=功放额定输出阻抗(等于音箱额定阻抗)/功放输出内阻。 由于功放输出内阻实际上已成为音箱的电阻尼器件,KD值便决定了音箱所受的电阻尼量。KD值越大,电阻尼越重,当然功放的KD值并不是越大越好,KD值过大会使音箱电阻尼过重,以至使脉冲前沿建立时间增长,降低瞬态响应指标。因此在选取功放时不应片面追求大的KD值。作为家用高保真功放阻尼系数有一个经验值可供参考,最低要求:晶体管功放KD值大于或等于40,电子管功放KD值大于或等于6。

保证放音的稳态特性与瞬态特性良好的基本条件,应注意音箱的等效力学品质因素(Qm)与放大器阻尼系数(KD)的配合,这种配合需将音箱的馈线作音响系统整体的一部分来考虑。应使音箱的馈线等效电阻足够小,小到与音箱的额定阻抗相比可以忽略不计。其实音箱馈线的功率损失应小于0.5dB(约12%)即可达到这种配合。

功率放大器的回顾

音频功率放大器是一个技术已经相当成熟的领域,几十年来,人们为之付出了不懈的努力,无论从线路技术还是元器件方面,乃至于思想认识上都取得了长足的进步。回顾一下功率放大器的发展历程,对我们广大音响爱好者来说也许是一件饶有趣味的事情。

索引:

一、早期的晶体管功放

二、晶体管功放的发展和互调失真

三、功放输入级——差动与共射-共基

四、放大器的电源与甲类放大器

五、其他类型的放大器

me2000 发表于 2007-8-11 12:01

一、早期的晶体管功放

半导体技术的进步使晶体管放大器向前迈进了一大步。自从有了晶体管,人们就开始用它制造功率放大器。

早期的放大器几乎全用锗管来制作,但由于锗管工艺上的一些原因,使得放大器中所用的晶体管,尤其是功放管性能指标不易做得很高,例如,共发射极截止频率fh的典型值为4kHz,大电流管的耐压值一般在30V一40V左右。这样,放大器的频率响应也就很狭窄,其3dB截止频率通常在10kHz左右,大大影响了音乐中高频信号的重现。再加上功放管的耐压、电流和功耗三个指标相互制约,制作较大功率的

OTL或OCL放大器不易寻到三个指标都满足要求的管于,所以不得不采用变压器耦合输出。变压器的相移又使电路中加深度负反馈变得很困难,谐波失真得不到充分的抑制,因此这一时期的晶体管放大器音质是很差的。“还是胆机规声”,这种看法的确事出有因。

二、晶体管功放的发展和互调失真

随着半导体工艺的逐渐成熟,大电流、高耐压的晶体管品种日益增加,越来越多的功率放大器采用了无输出变压器的 OCL电路或 OTL电路(图一)。 最初的大功率 PNP管是锗管,而 NPN管是硅管,两者的特性差别非常显著,电路的 对称性很差,人们更多采用的是图二所示的准互补电路,通过小功率硅管 Q1与一只大功率的 NPN硅管 Q2复合,得到一只极性与PNP管类似的大功率管,降低了电路因对称性差而招至的失真。 到了六十年代末,大功率的 PNP硅管商品化的时候,互补对称电路才得到广泛的应用。元器件的进步使晶体管功率放大器的技术指标产生了质的飞跃,在主观音质评价方面,也改变了过去人们对晶体管功放的看法,无论是在厅堂扩音、电台节目制作还是家庭重放,晶体管功放都被大量地采用,首次在数量上以压倒性的优势超过了电子管功放。在商品化的晶体管扩音机中,相继出现了一些摧琛夺目的名机,如 JBL的 SA600, Marantz互补对称电路MOdel15等等。

尽管电子管的拥护者仍大量存在,人们毕竟能够比较公正地看待晶体管放大器了,认为晶体管机频响宽阔,层次细腻,与电子管机比较起来有一种独特的舱力,而不是简单的谁取代谁的问题。

瞬态互调失真的提出是认识上的一次飞跃七十年代,功率放大器的发展史中出现了一件最引人注目的事情,这就是瞬态互调失真 (Transient lntermodulation)及其测量方法的提出。1963年,芬兰 Helvar工厂的一名工程师在制作一台晶体管扩音机时,由于接线失误,使电路的负反馈量减少了,后来却意外地发现负反馈量减少后的音质非常好,客观技术指标较差,而更正错误以后的线路尽管技术指标提高了,音

质反而比误接时明显下降。 这一现象引起了当时同一工厂的 的重视,之后,他对此进行了悉心研究,于1970年首先发表丁关于晶体管功率放大器瞬态互调失真(TIM)的论文。至 1971年,Otala博士及其研究小组就 TIM失真理论发表的论文已经超过20篇,引起了电声界准互补电路人士的广泛反响。

瞬态互调失真的大意是这样的:

在直接耦合的晶体管放大电路中,为了得到很小的谐波失真度和宽阔平坦的频率响应,通常对整体电路施加深达40dB一60dB的负反馈,倘若在加负反馈前放大器的开环失真为10%,那么加上40dB的负反馈后,失真即可降低至0.1%,这是电子管功效难以做到的。 晶体管功放由于要施加40dB。60dB的负反馈,所以对一台增益要求为26dB的放大器,它的开环增益就要达到66、86dB。

如此高的增益之下引入深度负反馈,电路势必会产生自激振荡,因而需要进行相位补偿,一般是在推动级晶体管的集电极——基极之间接接一个小电容 C,破坏自激振荡的相位条件,形成所谓“滞后补偿”,

当放大器输入端输入持续时间非常短的过渡性脉冲时,由于电容 C需要充电时间,所以推动管集电极电压要经过一段时间延迟方能达到最大值,见图四。显然,在电容 C充、放电期间,输出电压 V。将达不到应有的电压值,输入级也不可能得到应有的反馈电压 Vf,因而,在过渡脉冲通过输入级的瞬间,输入级将处于负.反馈失控状态,致使输入级严重过载,输出将严重削波(图三 a点),引起过渡脉冲瞬时失真(图五)。如果过渡脉冲波形上还叠加有正弦信号,输出端还会得到很多输入信号频谱不存在的互调频率成份,这就是 TIM失真。

TIM失真和音乐信号也有密切关系,音量大、频率高的节目信号容易诱发 TIM失真。严重的 TIM失真反映在听感上类似高频交选失真,而较弱的 TIM失真给人以“金属声”的不快感觉,导致音质劣化。至今,音响界对于 TIM失真都还有争议,但这毕竟是人们认识的深化,它使后来放大器的设计思想发生了根本性的变化,即更加注重放大器的动态性能而不是仅仅满足于静态技术指标的提高。

三、功放输入级——差动与共射-共基

对称和平衡是电路发展的方向对称和平衡也许是世上事物完美的标志之一。

音乐讲究各声部之间的乎衡与统一,美术以色彩搭配均衡、和谐为美,在服装设计中,常常采取看似不对称的设计,其实质也是为了取得视觉上的均衡。上面所说的都是艺术,对称和平衡给人一种安定、完美的感觉。有意思的是,在功率放大器中,对称和平衡也有类似的效果。

最初采用对称设计的例子要算互补对称电路了,一上一下的两只异极性晶体管作推挽输出,不仅可以免除笨重的输出变压器,而且电路的偶次谐波失真在推挽的过程中被抵消了,保真度有了很大提高。稍后,人们从运算放大器的设计中得到启迪,将左右对称的差动式电路用于功率放木器的输入级,电路的稳定性和线性都得到改善,这时的电路结构如图六所示,这一结构直至今天都还有人采用。 如果以现代的眼光来审评,这一电路是显得过时了一点。电路的主要缺陷在于电压推动级,因为 Q1承担了提供电压增益的主要任务,必然是开环失真很大,频带狭窄。此图六 典型的 OCL放大器外,单管放大的过载能力也很差,这一系列的缺点是不利于电路的动态性能的。围绕着改进电压推动级的性能,人们相继提出了多种结构,共射——共基电路就是一个典型的例子。

共射——共基电路又叫“猩尔曼”电路,它原先是高频电路中广为采用的结构,但用于音频电路中同样可以发挥出色的性能。首先是它的宽频响,由于共基放大管 Qs非常低的输入阻抗,使 Q,丧失了电压增益,弥勒效应的影响就非常微弱。 宽频响的推动级拉开了与输入级极点的距离,相位补偿变得很’容易,而且电容 C的容量可以大大减小,这对于改善 TIM失真是很有利的。 第二个优点是电路的高度线性:共基极电路的输出特性也可以清楚地显示出这一点,有人作过测试,共射一共基电路的失真度比单管共射电路要低一个数量级。

依然是一种不平衡的设计,这一限制来源于输入级。如果把输入级变动一下,从互补推挽的 Q:和Qg的集电极输出信号,那么电压推动级就可以在图七的基础上再增加一组 NPN管构成的共射一共基电路,做到推挽输出,这时电路也就非常对称平衡了,几乎达到了完美的程度。

当今许多最先进的功率放大器采用的也是这种电路结构。图八是另一种电压推动级的形式,其输入信号来自图六中的 Ql和 Qs,当然此时 Qz必须加上集电极负载电阻。电压推动级也采用对称的差动放大,

这不仅可以改善输入级的平衡性,提高放大能力和共模抑制比,而且同样可以降低推动级的失真,因为差动式放大电路当输入在一定的范围内时具有线性的传输特性,有的电路还在 Qn、 Qz的发射极串人负反馈反阻,更加扩大了线性范围。 Q2和Qd构成镜像电流源,把 Q,的集电极电流转移到 Qz上,所以尽管是单端输出,电流推动能力却比原来增大了一倍。 PIONEER的M22K功率放大器就是采用的这种电路结构,取得了非常好的效果。对称和平衡不仅体现在电路的结构上,还表现于元器件的参数上。差动电路是集成运放中广泛采用的结构,其性能是建立在两只差分管 Hrs和 Vss精确匹配的基础之上。同样,推挽电路中,如果两只异极性的晶体管特性不一致时,对波形的两个半周就不能做到一视同仁地放大,这将增力D电路的失真度。

随着节目源的变化,音乐中包含大量瞬变、高能量的成份,要完美地重现这些细节,就要求放大器具有良好的动态响应,对晶体管配对的要求就不仅是静态的 HrR和 VBE匹配,而且在动态时也要高度匹配,这无疑对元器件参数的平衡提出了更苛刻的要求。 幸运的是,半导体技术的进步为我们提供了这种可能,各种各样的差分对管、晶体管阵列陈出不穷,单个的晶体管一致性也得到较大提高。正是这些优质的元器件,让对称电路设计的优点得以充分体现,今天看到一台全无负反馈的电路也不会觉得惊讶,因为已经有足够好的开环性能了,又何必为了几个仪器上的数据去牺牲放大电路的动态响应呢?

me2000 发表于 2007-8-11 12:02

四、放大器的电源与甲类放大器

极端重视电源的现代放大器“放大器不过是电源的调制器”,这句话道出了放大的实质。

既然如此,又有什么理由不引起对电源的高度重视呢。电源部份作为推动扬声器发声的源泉,再也不应象过去那样随便找个整流电源接上了事。对电源的要求有两个方面,即纹波噪声小,输出能力强。噪声小比较容易办到,只要加大滤波电容器的容量就可以,但是要做到输出能力强却不简单。

首先要加大电源变压器的容量,这是过去一些放大器生产厂所不乐意的,因为加大电源变压器容量会使成本大量增加,整机的重量和体积也会加大;但现在听小喇叭的人越来越多,这些小喇叭大多效率很低,有些名牌音箱如 Celestion SI一6O0或 Ro3ers LS3/5a,十分大食难推,再加上现代节目信号中常常出现一些炮弹爆炸,锣鼓敲击的声音,对放大器是一个极为严峻的考验,同样两台100W的放大器,一台可能让你感觉到大炮地动山摇的震撼力,而另一台可能象是破鼓在“咐咐”作响。所以现代优质的功率放大器的电源储备量十分惊人,往往采用巨大的环形变压器,再配合容量达数万甚至数十万徽法的电容器,以提高电源的瞬时供应能力。 KRELI的功率放大器号称“功率发动机”,如 KSA一250功效,在8Ω时输出功率为250W/每声道,4Ω时为5O0W,2Ω时为1000W, lΩ时为2000W,而且任何状态下失真均小于0,1%,真是惊人 ! MarkLevi2zson的产品也是极端重视电源的典范。提高电源 的质量,不仅是量的加大,还有质的提高。滤波电容是一个关键,它除了起平滑滤波和储能的作用以外,还是音频信号的通路,因此优质放大器中常常采用专门为音响用途而生产的电容器,以求获得更好的音质。

KRELLKAS放大器中,电源部份竟然采用稳压电源供电,这台机器可以在纯甲类状态下输出400W的功率,为此,其电源部份也付出了采用60只大功率晶体管的代价。

重视电源的一个副产物就是甲类放大器再度成为时尚(这并不是贬意)。甲类放大器一直因为耗电多,效率低而未能在大功率的放大器中得到应用,但它天然的优点是无交越失真,无开关失真,并且谐波分量中主要是偶次谐波,在听感上十分讨好听众,故而一些极度发烧的爱好者和厂家仍不惜代价地制作甲类放大器,电源储备量的提高更是为制作甲类放大器提供了有利的条件。

五、其他类型的放大器

最好的功率放大器还没有出现人们对功率放大器的研究一刻也没有停止过,新的元器件、新的电路形式、新的理论不断出现,放大器的研究也针对这三个方面全面地铺开。不器件上, VMOS管的使用是八十年代以来的一个新动向。

VMOS管频响宽、线性好、无二次击穿以及电压推动等一系列优点吸引了越来越多的使用者,它的音色也

与电子管很接近,投合了胆机迷的口味。 现在主要是缺乏品种众多的 P沟道互补管,这个问题相信很快就能解决。

IGBT也是值得注意的一种新器件,它由 MOS管与双极晶体管复合构成,兼有 VMOS管的电压激励和双极晶体管压降低的优点,很有发展前途。电路的研究以日本的各家公司最为活跃,近年来,一些公司从全新的角度提出了一系列电路,如YAMAHA的 ALA, SONY的电流传输,Technics的 CLASS AA,

DENON的双超线性,还有英国 Quad的电流倾注,都试图消除失真的产生,可是人们更欣赏的却是以精良元件和精湛工艺制作的不带这些附加措施的放大器。

此外,对电路的客观技术指标与主观音质之间的精确关系还有待弄清,这需要有新的理论作为指导。国内外的学者们从不同的角度提出了全新的理论,有的认为人耳的动态听觉上限超过了20kHz,有的提出了计权失真度的概念,认为人耳对不同频率的失真具有不同的感知阂值,从10%到0.01%,并给出了实验得出的阂值曲线。在上述的观点指导下,必然要制作频带更宽,全频带失真都极低的功率放大器,而且节目源也有待改进,当然这些理论的正确性需要通过实践的检验。

新的技术飞跃往往是新材料、新理论、新方法的出现之后产生的,音频放大器同样也不会例外。在科技日新月异的时代,我们有理由期待更完美的功率放大器的出现。

me2000 发表于 2007-8-11 12:02

功放与音箱的功率配置

在专业扩声领域里,音响器材的配置是十分考究的,其中功放与音箱的配置是最重要的,虽然,一些音箱生品使用说明中向用户推荐了所配功放的具体牌号或型号,但还是有局限性,因为用户经常面对诸多型号的功放,无从下手。

功放与音箱的配置所涉及的方面很多,例如功放牌号、功率管类型的选择及低灵敏度音箱应配置哪种功放等。功放与音箱的具体配置,一般来说与设计人员的经验、爱好、听音习惯等因素有关,很难找到一个统一的标准。有时我们会遇到一些用户或设计人员为了节省开支常给音箱配置较小功率的功放,有些用户又为了所谓的"功率储备充足"给音箱配置很大功率的功放。显然,这样做都是不合适的。重要的是,这样配置会给设备造成损坏。在功放与音箱配置中,功放功率的确是关键,也就是说,功放功率的确定原则应该是统一的。

大家都知道,在进行厅堂声学设计后,需要根据一系列计算确定音箱功率,然后再由音箱功率确定功放功率,但是究竟两者功率如何选配才能达到最佳匹配呢?

首先,在人耳听域的20Hz~20kHz内,真正集中大量能量的音乐信号一般在中、低、频段,而高频段能量仅相当于中、低频段能量的1/10。所以,一般音箱高音损失的功率比低音喇叭低得多,以求高低音平衡;而功放好比一个电流调制器,它的输入音频信号的控制下,输出大小不同的电流给音箱,使之发生大小不同的声音,在一定阻抗条件下,要想让标称功率为200W的功放达到400W或几倍的输出其实很容易,只是功放的失真(THD)将会大大地增加,这种失真主要产生在中、低频信号中的高频谐波,其失真越大,高频谐波能量就越大,而这些高频失真信号都将随高频音乐信号一同进入高音头,这就是为什么小功率功放推大音箱会发生烧高音头的原因。而在不少人的概念里,只要功放功率大,就有可能烧音箱。虽然有些功放没有失真指示,但由于设备配置已经先天不足,失真有可能在使用中时有发生,这时失真指示已失去意义。况且,由于使用者的经验和素质的限制,功放的失真往往容易被忽略。

其次,功放与音箱的功率配置与目标响度以及所使用场合也有一定的关系。在一定目标响度下,应该

让音乐信号的动态在每件器材上都能得到充分的保证,如果功放功率太大,其增益设置很小时,响度已达到要求,但这时功放的增益就限制了信号的动态范围。所以,功放功率不能太大;否则,既然浪费开支,又会带来响度和音乐动态无法兼顾以及音箱负荷过重的麻烦。根据以往经验,一般语言、音乐扩音场所和大动态的迪厅等场所是有区别的。有一般扩音场所信号起伏小,不需要功放长时间或很快提供很大电流给音箱,所以功放功率应该比要求强劲有力的大动态扩音场所的功率要小;另外,所谓的"功率储备"也应该针对音箱而言,值得注意的是,功放的选定必须由音箱决定,不应该有"功率储备"的概念去配置功放。换句话说,在一定的目标响度下,音箱可以比设计值大一些,以备不同用途,而功放的功率应该严格由音箱决定,没有太大的灵活性。

总之,功放与音箱功率配置的具体标准应该是:在一定阻抗条件下,功放功率应大于音箱功率,但不能太大。在一般应用场所功放的不失真率应是音箱额定功率的1.2-1.5倍左右;而在大动态场合则应该是1.5-2倍左右。参照这个标准进行配置,既然能保证功放放在最佳状态下工作,又能保证音箱的安全,即使对经验不足的操作人员,只要不是操作严重失误或前级周边设备调校不当,就能让音箱和功放工作在稳定状态。

话说音箱

就目前Hi-Fi音响系统而言,扬声器系统----音箱在技术上仍是一个相当薄弱的环节。音箱作为一种尽可能忠实再现艺术作品的器材,其忠实再现应是第一位,但就目前的技术对忠实再现,还只能是个相对的定义,这也是不同牌号的音箱都有自己声音特点的原因。当今世界上的音箱,品种繁多,但性价比高的却并不太多。从总体上看,大部分美国音箱力度好,气势恢宏,适于重放流行音乐;大部分英国音箱柔和细腻,极富音乐感,适于重放古典音乐;丹麦、德国、法国等欧洲音箱,则介于前两者之间的占多数。

小型音箱原是供流动录音时方便监听之用而制造,随着居住环境趋于小型就逐渐流行起来。书架型(bookshelf)音箱,原系尺寸相当于杂志大小,容积在9升左右,放在书架上的小型扬声器系统,它们的高、低频单元辐射的声波浑然一体,辐射图形大致呈球面波,所以小型音箱的声辐射更接近理想的"点"声源,这就改善了立体声重放的定位感和声扬感,而且小型音箱瞬态反应好,体积小巧,摆位容易。可见小型音箱特别适宜在小居室作近距离聆听,播放动态不大的弦乐、人声和古典小品。但一般小型音箱的低频表现,与大型音箱是有差距的,特别是要求动态气势的场合,只要环境条件许可,不应考虑使用小型音箱。

落地型(floorstander)音箱大多使用口径较大的扬声器单元,如165mm、200mm、250mm,在大房间里可发挥它低频浑厚、气势磅礴的特点,所以大型音箱富有真实的现场感。但它在小房间使用时,则将有问题,因为在聆听距离较近的情况下,标准声压的驱动功率就须减少,这样音箱的气势就出不来,反而有低音不足感,而离音箱过远时,房间内墙面、家具等反射造成的非直达声又较多而干扰直达声,反而影响音质。

大口径低频扬声器的锥盆在复杂运动中,会产生高次谐波和对某些短促的声音产生瞬态失真,现代音箱为了克服这个不足,常以几个小尺寸的扬声器单元代替一个大口径的扬声器单元。

一些高度在0.5m左右,介于小型和大型音箱之间的中型音箱,在国外称座架型(standmount),需放在适当的脚架上使用,它们的表现介于小型和大型音箱之间而兼有它们的长处,富有一定特色。

有些低效率的昂贵书架型贵族音箱(以难推闻名),对功率放大器的要求很高,不仅要求输出功率足

够大,还要求输出电流要足够大,并且阻尼特性好,否则其效果往往还不如一般音箱,这点是要有充分认识的,属于这类的音箱品牌有DYNAUDIO Acoustics(丹麦"丹拿")、MOREL、ATC、Lynnfield及Ensemble等。

me2000 发表于 2007-8-11 12:03

音箱不可能完美,难免会存在一些不足和缺陷,但如有低频不足、高频夸张、声场营造能力差、不该有的声染色等情况,那就属于明显缺点,高、中、低频的表现应以平衡的量感为准则,某频段的突出表现只是特性之一,不能作为评判的依据。此外,音箱在大声压级时不能产生声音含混,甚至低音拍边现象。总之,音箱大多具有个性,也就是说每种音箱都有某种特殊的音色,这在选择时是一定要加以注意的,因为不少音箱之间往往只存在个人爱好问题,而不是优劣之分,而且在商店的环境下,对音响器材的音乐性、声像定位和立体感的差别又很难听得出来。不同音箱的表现会有不同特质的美,可说各有所长,声音之美与其它艺术般,随着拥有者的美感认知而展现不同的美感。

后级驱动能力与功率及电源供应关系

晶体后级驱动喇叭的能力至少与以下几个因素有关:一、电源供应。二、输出功率。三、阻尼因子。四、抵抗反电动势的能力。或许,我们如果从喇叭这个方向来看后级,可能会使问题更清楚些。从喇叭的方面要怎么看呢?喇叭的驱动难易程度与一、阻抗曲线的走势。二、灵敏度。三、相位角的偏移情况。四、反电动势的强弱。

先说阻抗曲线,在喇叭说明书中我们经常看到喇叭阻抗8欧姆或4欧姆的记载。其实这个8或4欧姆的数字只是概略性的数字而已,因为没有一支喇叭的阻抗曲线能够从20Hz到20KHz之间都维持在8欧姆的位置上,至少它会随着频率的变动而改变阻抗数值。有时会高到几十欧姆,有时会低到1欧姆。喇叭阻抗曲线的变化与后级有什么关系呢?不要忘了,后级的功率输出要由喇叭的负载阻抗来决定,假若一部后级宣称在8欧姆时有100瓦输出,那么在16欧姆时可能只剩下50瓦输出,在32欧姆下更只有25瓦输出。反之,它在4欧姆时输出可能会大到200瓦,2欧姆负载时更可能大到400瓦。

当喇叭阻抗变高时,后级输出只是变小而已。然而,当喇叭阻抗变低时,后级输出就不仅是变大那么简单了。当后级输出变大时,我们首先会遇上的问题就是电源供应能够提供那么大的输出功率所需吗?如果不能,在4欧姆时就无法达到200瓦输出,更别提2欧姆时会有400瓦输出。假若电源供应有那么大的余裕,可以充足供应400瓦的功率所需,我们还要考虑另外一个问题:功率晶体能够承受那么大的电压或电流吗?通常,厂家不太可能会在100瓦的后级上面用上400瓦后级所需的功率晶体,因为这样一来,成本会大幅提高。

喇叭的灵敏度表面上看起来很直接,90dB灵敏度可能比86dB灵敏度来得好推。问题是,灵敏度的测试只对整支喇叭所能发出的音压做测试,而非对每支单体所能发出的音压做单独测试。所以,当100瓦的功率同时输入到喇叭的高、中、低音单体时(假设喇叭为三音路),首先遇上分音器,分音器在吃掉一些功率之后,再把剩下的功率输送到三个单体上面。此时三个单体会因为本身效率的不同、阻抗曲线的不同而对输入的功率产生不同的反应。换句话说,高、中、低音单体所发出的音量会不一样大。通常,我们如果发现低频量感很少,就会说这对喇叭很难推,不管它在说明书上记载的效率有多高,它就是很难推。而这种难推的喇叭往往又伴随着另外一个问题:高音单体很好推。在低音单体难推、高音单体好推的情况之下,您能想象会发现什么现象吗?那就是很多人都曾经尝过的苦头:低频不够饱满、高频却刺耳。

相位角的偏移其实就是喇叭容抗、感抗、阻抗趋前或落后的复杂变化。由于喇叭不仅与电子反应相关(被动分音器),也与机械反应(单体结构)相关,更与空气容积相关,它们相互之间会产生复杂的反应。这也就是说,后级无时不刻都在与复杂的喇叭容抗、阻抗、感抗搏斗,这也是喇叭难推的原因之一。

最后说到反电动势,我们可以把喇叭单体总成,看成一个有线圈、有磁铁的发电机,当扩大机的电流输入,驱动振膜进行前后活塞运动时,喇叭单体会产生电流,这股电流会回输到后级扩大机里,我们称此现象为反电动势。反电动势越大,喇叭就越难推。晶体后级由于直接与喇叭耦合,比较易受反电动势影响。而真空管后级由于有输出变压器耦合喇叭,受反电动势的影响较小。

写到这里,我们可以回头来看DR-3与DR-9的问题。从您所提供的数据中,我们可以知道DR-3与DR-9的电源供应能力在储存电能的电容上相差10,000μFD,不过DR-9的电源变压器稍大些,所以二者实际上的供电能力没差多少,我猜真正有差别的应该是功率晶体。所以,您可以这样认为:DR-3虽然只有纯A类25瓦,但是它的电源供应能力很足,在遇上难缠的喇叭时,能够比一般25瓦后级发挥更强的喇叭驱动力。反之,我们也可以这么看DR-9:在与DR-3相近的电源供应能力下,它虽然可以在8欧姆负载下输出100瓦,不过在4欧姆或2欧姆负载之下能否输出足够的200瓦或400瓦而不失真就有待观察了。

或许这个例子可以告诉我们,光看说明书上的功率输出数字并不代表太多的意义,更重要的是后级实际驱动喇叭时的表现,这也就是我们常说的:要以耳朵验收的一个实证。

supermax 发表于 2007-8-11 12:03

都看晕了,居然还抢了个沙发。。

me2000 发表于 2007-8-11 12:03

鉴赏音响的基本概念

每种乐器都有其独特的频谱、音色,要想提高音乐欣赏的能力,一定要多做听力对比,即播放一首乐曲时,音箱系统放出的音色与实际乐器演奏的音色有哪些不同,偏离多少等。为了进行听力对比,首先应该了解一些电声学名词概念、人耳的听觉特性和音响设备的主要技术参数指标。

一、部分电声学名词解释

1、纯音:它有两种含义:(1)指瞬时声压随时间作正弦变化的声波;(2)指具有明确单一音调的声音。

2、基音:是指复合音中频率最低的成分。

3、泛音:复合音中频率高于基音的成分,其频率可以是基音频率的整倍数,也可以不是。各种乐器用不同演奏方法能产生数量和强弱各不相同的泛音成分,即使基音相同也能具有不同的音色。

4、声波:弹性媒质中传播的一种机械波,起源于发声体的振动。声波范围为20Hz-20KHz,频率高于20KHz的声波为超声波,频率低于20Hz的声波为次声波,超声波和次声波一般不能引起听觉,只有频率在两者之间的声波才能听到,我们把能够听到的声波称为音波或可听声。

5、声场:指媒质中有声波存在的区域。不同的声源和环境可以形成不同的声场。

6、响度:又称"音量",人耳对音量大小的一种感受。取决于声强、频率和波形。

7、音色:又叫"音品",主要由其谐音的多寡及各谐音的相对振幅所决定。

二、人耳的听觉特性

人耳对声音的方位、响度、音调及音色的敏感程度是不同的,存在较大的差异。

1、方位感:人耳对声音传播方向及距离、定位的辨别能力非常强。人耳的这种听觉特性称之为"方位感"。

2、响度感:对微小的声音,只要响度稍有增加人耳即可感觉到,但是当声音响度增加到某一值后,即使再有较大的增加,人耳的感觉却无明显的变化。通常把可听声按倍频关系分为3份来确定低、中、高音频段。即:低音频段20Hz-160Hz、中音频段160Hz-2500Hz、高音频段2500Hz-20KHz。

3、音色感:是指人耳对音色所具有的一种特殊的听觉上的综合性感受。

4、聚焦效应:人耳的听觉特性可以从众多的声音中聚焦到某一点上。如我们听交响乐时,把精力与听力集中到小提琴演奏出的声音上,其它乐器演奏的音乐声就会被大脑皮层抑制,使你听觉感受到的是单纯的小提琴演奏声。这种抑制能力因人而异,经常做听力锻炼的人抑制能力就强,我们把人耳的这种听觉特性称为"聚焦效应"。多做这方面的锻炼,可以提高人耳听觉对某一频谱的音色、品质、解析力及层次的鉴别能力。

三、影响音质、音色的主要技术指标

1、频率范围(单位Hz):功率放大器在规定的失真度和额定输出功率条件下的工作频带宽度,即功率放大器的最低工作频率至最高工作频率之间的范围。

2、频率响应(单位:分贝dB):功率放大器的输出增益随输入信号频率的变化而提升或衰减和相位滞后随输入信号频率而变的现象。这项指标是考核功率放大器品质优劣的最为重要的一项依据,该分贝值越小,说明功率放大器的频率响应曲线越平坦,失真越小,信号的还原度和再现能力越强。

一套好的音响器材,除要把各种乐器的音韵再现外,还要把各种乐器演奏的位置、距离、场面再现出来。无论个人偏爱的是哪种色调或机型,如果播放出来的音色与原来乐器演奏的音色有听觉上的差异,就不能算是一台好设备。高保真音响(Hi-Fi)的真正含义是高还原度。如果你的音响设备不能还原出原有乐器的音色韵味,那麽就称不上高保真设备。当我们利用主观听觉判断某一音响设备时,要充分注意这一点,不要因个人的偏爱而影响正确的判断与鉴别能力的提高。

金刚台 2006-10-15 02:46 PM

搅出靓声的13**则

阁下如熟读音响杂志又或者玩hi-fi已经有一段日子,可能你都懂得绝大部份以下的改善靓声方法,但有时候非常简单的事也可能会遗忘了或忽略了,本篇旨在将一些简单容易的靓声法门与读者重温一下,好让你在有需要时翻阅帮助记忆及收温故知新之效,并且对於资历浅的读者更可以通过实际试验,从而获得更多的音响知识及宝贵经验。

总括音响要玩得好,财力固然重要(笔者倒认为平有平玩,大可不必介怀财力之多寡),却不得不配

合后者,那便是要懂得玩音响的一套学问,否则可能被它耍了。注意一些应该与不应该做的方面,最后还有调校声音的功夫,这点十分重要,每当购入一套全新的系统回家之后,都需要作初步的摆位后校声,待一切安顿下来,以后的日子仍不断要去作一些微调,以达到自己的要求。如是者,每换了新器材及转换过摆位之后都要视乎情况,再作一番调校。换言之,摆位的校声与玩音响实乃不可分割的事,除非你不懂得怎样去做又或者对这方面压根儿就毫不重视。说到底,多花点功夫及心思并不是苛求,而只是希望器材发挥应有水准的一种态度。

靓声法则

要改善一套系统的重播效果,除了换更贵更靓的器材之外,方法还有很多,甚至有些是不费分文却收效颇大的。

1. 每隔半年全面清洗接点一次

这个程序经常都会忘记,却是必要做的,该知道金属暴露於空气中不久,表层就会有

氧化现象,失去光泽,变得暗哑。即使讯号线插头表面经过镀金处理后,已不易氧化,与机身插头又有紧密接触,但日子久了,仍然会有一定程度的氧化道致接触不良,所以最少也要隔一年清洁一次。只要用棉花沾上酒精涂抹接点便可以了,做完这重工夫之后,可以令接点回复最佳接触,声音也随之清晰、透明一点。

2. 清洗CD机的镭射唱头

大家应该都见过镭射唱头只是那么一小点的面积,也全靠化以镭射光读取CD碟上的

记号,因此唱头上只要粘附上极少的微尘都足以影响读取信号的精确度,虽然CD机大都有密封的机身,但别忘记在经常出碟入碟的过程中就有空隙让灰尘乘虚而入了,一段日子下来,唱头表面定然留有或多或少的灰尘,这时便要拧开机盖螺丝,打开机盖直接用棉花棒点上酒精清洗。市面上虽然有售各种清洗CD碟,但是你花了一面几十元,那些所谓洗CD碟可能只是靠一排刷去扫掉灰尘或者是利用绒面之类靠转动来除尘,效果可及不上直接用棉花棒辙底。当你那部久未洗头的CD机清洁完毕之后,再听时会令人有掀开一层纱的感觉,而高频回复旧日的清晰,细节也听多了。

这个清洗唱头的步骤大概要一年做一次,就算是使用Pioneer的反转式唱盘系统(镭

射头向下而非向上)灰尘仍会被唱头所带的静电吸引而黏附其上,所以这工夫也还是不能省的。

3. 用沙胶轻擦胆脚

家中使用胆机的朋友可以去书局买一枝沙胶笔(因笔形沙胶较幼身,用起来灵活很多)

轻轻将每只胆的胆脚细擦一遍,再安放回胆座,经这样擦过的灯胆的确会靓声一点,各频段听落都有改善,而讯息量亦要多一些。这方法是多年前一位自焊胆机的师传傅所教,记得他还说过在手汗多时,不宜直接去磁胆身,以免留下手汗阻碍灯胆散热,最好在接触胆时,隔着毛巾之类便最佳。

4. 置放器材要尽量避免机叠机

基於环境问题而要将器材叠起来摆放原亦无可奈何,到有条件时,就应尽量将最主要

的CD讯源及扩音部份独立来摆放,究其遗害之处,主要是由谐震所致。当喇叭播放音乐时,震动空气令到器材跟随震动,两部机相叠便会互相传道谐震,令到音乐中的微细讯息模糊不清,并且干扰各频段的传送,造成一种声音的污染,又如其中一部是CD机,自身播放碟时马达连转又加剧了谐震幅度,影响就更巨。这所以要把器材独立置放在稳固机架之上。

5. 分体供电与主机、单声道后级之间最好保持距离

现今连不少中价前级都有一个盒仔大小的分体供电,简单地将火牛与主机分开为两部

份,好处自然是可将机内零件与火牛之间可能引起的干扰隔离。若然将分体供电器置放在前级旁边,那就有点失去意义了,赶快将它远离前级,如放在另一层的机架,即时便可听到整体的隔度有所提高,音像也会准确一些呢!单声道的后级亦然,有条件两年器材分开一点摆放保证有利无害。

me2000 发表于 2007-8-11 12:21

6. 注意喇叭线与器材的接驳

裸线接驳当然是最好,但却容易氧化,落锡便可解决问题了。线芯粗时需借助叉仔或

香蕉插这两种常用的接驳媒介,可以的话,绝对是选用叉仔的,因其接触紧密不似蕉插般易於拉脱,此外不要贪图方便,在叉仔之上,再加香蕉插才连接喇叭或扩音器,多经一个插头声音显然差很多。定期检查叉仔与接头有否连接不牢固的现象。在挑选叉仔及蕉插时,留意含铜量高的一种会比较为软身一点,非用蕉插不可时,则应以插身鼓胀的为合,因接触面积会较大也。

7. 废除CD机的可调音量输出

不少单体CD机都设有可调音量输出端的,以便利用遥控器控制音量,如果你在用不

着这个可调输出的情况下,是大可以将它废掉的,甚至乎机身前面有耳机输出装置的,在不需要的情况下也可一并废除,这两组讯号输出是经由主讯号所分出来的,一经废除,只用一组固定音量输出时便不用分薄了讯号输出的能量,声音会较为实净,力感亦比前更佳。要废除这两组输出方法不算复杂,只要打开机盖,抽起机内有关的连接线便可以了。

8. 合并机背后有接驳桥者亦属必换

部份合并式扩音机可以独立作为前后级使用,在机身北后都有一条U字形的金属条连

接pre-out以及main in,虽然只是区区三机寸的长度,却一样可以视作前后级接线般,换条靓线肯定有所改善,不过市面上售卖的成品线多为一米长度,故可以买散装线来自己动手造一条最短的连接线,材料只需要四只RCA插连同一尺长讯号线开二,即半尺长度一条。由於距离短的关系,讯号线的外皮及负极部份都可以不要,只保留馀下正极的一细条,用锡焊在RCA插上便大功告成了,由於只动用到一尺线,那么买条一点的靓线亦所费无机,效果却可同由普通线换上靓声讯号线。

9. 稳固电源线拖板

目前售价的器材都必定使用五安培或十三安培的插头,在与拖板连接时,紧密程度高

很多,不会有用手碰它便轻易摇动的情况,反观仍旧用美式三脚或普通扁平两脚插的话,插上拖板不免有晃不牢固的情形出现,将之与拖板加强稳固是可以有助靓声的。方法是用幼绳或线将电源插头绑紧在拖板

之上,再而可以在拖板之下用双面胶纸或绳连接一声大板或云去进一步加强其稳固性,声音自然获得改进,会令音像明确些,线条更幼细等。

10.干扰越少,声音越靓

室内的影音器材及电脑应避免与音响共用一组电源,却使要放在一起也应由别处加拖板来取电,其次让接线纠缠在一起也会令线与线之间互相吸收杂讯破坏音质。如欲进一步达到纯净的效果,可以使线材离开地面,只要用象棋或衣夹承起线身便可,但是可能令声音过於干净,要视乎情况而为,可视作校声的一种却并非必定适合。

11.器材需要保熟保透

不单止是器材,接线亦一样要保顺方能发挥尽致。建议大家可以买一只XLO的burn-

inCD,利用track8的保机讯号来保练这器材,该段讯号包含有极高至极低的频率,用来保机可谓事半功倍。每一件新器材或接线买回来都可以通过保练的程序,更快进入稳定靓声的状态,就算是已经使用了一段时间的器材亦可照保可也,只要未到烂熟阶段,相信仍然呆有所改善,特别是喇叭效果尤佳,连续保练十馀小时已然见功。

这样做在可保透器材之馀,其实亦有令全套系统的连接部份运行更畅顺的好处,情况有如通过这连绵不断的讯号而打通系统的任督二脉,生死玄关一般,会令声音变得顺滑了,高频的硬处、角位修饰了,听起来舒畅得多,歌者仿佛唱得更放更投入,而低频也从容了,这不单单是一张碟的功劳,而是各部份连接段落及器材都进入了更佳状态所致,这碟不过是从旁引道协助的角色而已。

12.喇叭摆位

在摆位后校声中是十分重要的一环,马虎不得,摆得不好难免令重播效果大打折扣。要如何在房间中找到最好声的摆入位置实在颇考功夫,不妨翻阅《发烧音响》九五年三月号喇叭摆位特辑,内容详尽,必可尽解阁下的疑虑。

13.昏暗环境有助聆听效果

关了类来听歌是一个习惯上的问题,可说与重播祉不上关系,只是在漆黑的环境之下,耳朵会特别灵敏,而且减低了视觉上的障碍,对音响画面重组以及乐器的位置感便会格外感觉清楚明确,气氛之佳与开亮灯时更相去颇远,害怕乌灯黑火盲摸摸的话,可以随手放一把电筒以作照明之用。

其他靓声法

上述种种之外,尚有如吸音、加钉脚、配线及附件等靓声招数。

me2000 发表于 2007-8-11 12:22

吸音

在一般的家庭环境之内,家私杂物已经是上好的吸音材料,大可不必把吸音功夫搅得太繁复,大致上铺一张地毡已经有基本的加强吸音效果。加上地毡的好处是可以减少地板的反射声,避免混和正面传来的

声音造成混浊,想知道自己的房间是否需要加上地毡,铺在地上测试声音有何变化便知晓了,效果与铺上地毡也差不多,那便不怕一旦地毡买回来后会用不着了。

喇叭距离后墙太近时,也可以考虑加一幅挂毡以增加深、阔度,但要注意不可用太大块,否则可能连超高频也吸掉,除非你的组合正被高频过於光辉而困扰着,对於过份的高频还可以搓一粒Blue Tak,贴在喇叭的高音单元旁边,锋利的声音自会收敛一点。

另外,房间的玻璃及镜都会有较强的反射声音作用,需要用窗廉来遮挡以解决问题。要求高的朋友更不妨在墙角位及室内的声音反射点上多做些吸音功夫,但要注意吸音不可过份,适量的反射声是有助声音生猛活泼的。

加钉脚

市面上有木钉、金属钉、陶磁钉、水晶钉、钻石钉、混合钉等可供选择,只因每种物质的道谐震性能都有别,器材在接触不同物质时,又会带有该物质的声音特性,原因每种特质都有本身的独有谐震,反映在重播上用木便有木声,金属有金属声,玻璃有玻璃声,不论是承放器材的机架、钉脚又或用之於压住机身的物件都会将本身的声音传道给器材,一般而言,始终是靓木才的声音较受欢迎符合传真靓声的准则,它的谐震令重播声音更自铁饭碗悦耳,钉脚的制作大都以木为主,并配上铜、钢、水晶、钻石等较坚硬物质作为钉尖以达到更进一步效果。

可以说钉脚的运用是较声必修的一课,运用得宜对音场、结像、空气感、线条感、深阔高度、动态、低频弹跳力等等都可以有莫大帮助,而当喇叭只入置在书回上时,钉脚同样派上用场。在此再重覆一次钉脚的原理是将器材会因为谐震减少了的缘故而令到声音起变化,只要你掌握谐震与重播声音的关系,就是提升了校声的功力了。

配线

一套靓声的组合之中,接线的重要已是不争的事实,我认为将之抬高到与器材看齐也不为过,到底系统中至少应用到几条不同的连线,它们个别都具有一定的影响力,全数加起来的改变力量可以很巨大,故配合得宜时自可收相得益彰之效,更甚者起死回生亦偶有所闻。在此想强调一下,每部器材的电源线也是必须要兼顾到的,即使是不能与机身分开的设计也可将之剪剩几寸线,再接驳上给电源线用的公插即可,只差几寸保证效果与原装插头差跑不大,想省钱用喇叭线来改装亦可以。

附件

世上音响附件越出越多,大有多不胜数之概,当中有些很有理论,也有些古灵精怪的,实际收效多少真的要试过方知真伪,待有机会时,再将一些有实效的音响附件记录下来集合成篇,好与读者分享。

me2000 发表于 2007-8-11 12:22

在校声的过程中最好记每一个改善程序的收效有多少,而遇上比前更差的情况出现便可能是施行不得其法,又或者这方法并不适合用於你现有的体系,例如是加钉脚、避震、使用队件等是需要运用得恰到好处,适可而止,否则便会过犹不及,希望读者在多作尝试之后,累积宝贵经验,到遇上问题时,便能懂得对症下药。

静电与锥盆的比较

在音响市场上,长期以来都是以锥盆喇叭为主流,静电喇叭与其它平面喇叭可说只是支流而已。主流喇叭当然有它成为主流的原因,然而,静电喇叭也有它迷人的一面。而且,若要论起锥盆与静电喇叭的优缺点,静电喇叭的胜面还比较多。可惜,长期以来一般人对静电喇叭的根深蒂固观念阻碍了静电喇叭的流行。甚至,到目前为止许多人都还存有几十年前静电喇叭的缺点,而不知道目前的静电喇叭已经改良到完成度相当高的程度。或许,静电喇叭的声音特质仍不为大多数人了解;或许,大多数人仍习惯于锥盆喇叭所发出的声音。不论如何,我们在此要以比较客观的态度来比较静电喇叭与传统锥盆喇叭的优缺点:

刚性、阻尼与质量三个问题

先说锥盆喇叭。相对于静电喇叭,传统锥盆单元或凸盆单元有什么问题呢?就以锥盆与凸盆振膜本身来说(暂且不论磁铁总成等其它的问题),锥盆靠的是音圈连接到锥盆底部的推动力量来运动,由于推动的力量仅及底部小面积,所以整个锥盆在理论上必须完全刚性,否则锥盆会变形。此外,当锥盆高速振动时,盆身材料必须要有很好的阻尼作用,否则推动锥盆的能量会残留在盆身内,引起音乐讯号之外的失真振动。

最后,我们都知道惯性定律,锥盆与音圈结合之后,是有相当质量的。当锥盆与音圈的质量越大时,惯性作用就越强,锥盆就无法随着音乐讯号的静止而同步静止;也无法随着音乐讯号的瞬间发出而激活。锥盆如此,凸盆也是如此,它们都必须面临盆身「刚性」、「阻尼」以及「质量」的问题。

相对的,静电喇叭的振膜「几乎」没有这三个问题。静电振膜在运动时是全面被静电的吸附排斥作用所控制的,也就是振膜上每一处都有能量促使它前后运动。再来,静电振膜非常薄,所以静电产生的运动能量不会残留在振膜内部。也由于静电振膜非常轻(比空气还轻),所以它的惯性运动问题非常低。

音圈磁铁总成与分音器的问题

以上所讨论的仅是静电振膜与锥盆振膜本身的问题而已,假若我们更进一步讨论到锥盆的音圈、音圈筒、悬边、固定锥盆位置的弹波、音圈承受大功率输入时所产生的变化、磁力的大小、磁隙里产生的磁力涡流等等时,那就更复杂了。例如音圈在大功率输入时会持续发热,当热度超过音圈承受范围时,音圈就会烧熔。此外,音圈越热,音圈运动的线性就越差,声音的动态范围就会受到压缩。毫无疑问,静电喇叭虽然也有另外的问题,但至少它没有以上这些问题。因为它只不过是一片绷紧的振膜在发声而已。当然,这片振膜可能会因为长时间使用而产生材料变化,不过我还没有看过这方面的相关资料。

除此之外,被动分音器也是传统喇叭的大问题,分音器会产生相位失真、会吃功率、会音染、会造成频率响应不均衡。而纯静电喇叭由于是全音域设计,没有分音器,所以在这方面静电喇叭肯定大获全胜。当然,Martin Logan静电喇叭由于除了CLS之外,其余全都是静电/锥盆混血设计,所以还是会有分音器的问题。

最后,静电喇叭没有箱体,也就没有因为箱体本身振动或设计不良而产生的负面影响。而传统锥盆喇叭不论采用何种箱体设计,总是免不了箱体所产生的「原罪」。在这方面,静电喇叭又是大获全胜。而Martin

Logan由于必须有低音喇叭箱,因此对于喇叭箱的设计与低音单元的安置下了一番功夫。

受限几个因素

就以上的比较来看,静电喇叭无论如何都要远胜锥盆喇叭,但是为何目前市面上还是以锥盆喇叭为主

流呢?从现实的状况来看,稍有思考能力的人不得不要怀疑,静电喇叭真有理论上那么好吗?其实,静电喇叭真的有那么好,只不过它受限于以下几个因素:第一、由于前后运动振幅有限制,所以无法再生锥盆喇叭那种强大的音压。第二、假若低频量感要足够,静电振膜的面积就要很大,庞然大物的静电喇叭在家庭实用价值上会受限,所以静电喇叭通常不会做得太大,它的低频量感也因此而受限。第三、静电喇叭本身就是一个集尘器,假若空气湿度高、灰尘又聚集太多,会让原本绝缘的振膜与金属网罩电极之间导通,通常我们称为「击穿」,此时就要更换振膜了。第四、有人怕会被静电喇叭的高压电死。

Martin Logan的改良

看到此处,再对照Martin Logan静电喇叭的作法,我想您会发出会心的微笑。原来,Martin Logan就是因为要改善低频量感,所以不得已才使用锥盆与静电振膜的混血设计。也因为采用了混血设计,所以它们的最大音压再生能力也适度的提高了。为了降低箱身对低频再生的影响,Martin Logan采用所谓Balanced Force Technology以及Force Forward Technology来降低低音单元与音箱互动之下所产声的问题。为了改善静电喇叭的集尘效应,从1993年起,Martin Logan就以交换式电源来提供高压给金属网罩电极,而且设计成有音乐讯号输入时才在金属网罩电极上产生高压,这样就让集尘效应降低了。

此外,由于Martin Logan的静电喇叭并没有布网罩,所以用家可以直接用吸尘器来清洁金属网罩电极,不过要记得清洁以前,要先把电源插头拔掉约五、六小时之后,才开始清洁,这样效果才会好。关于最后一项触电问题,据Martin Logan宣称,其金属网罩电极上的静电高压尚不及家里电视机屏幕上静电压的十分之一,绝对不会电死人,安啦!事实上,当Martin Logan静电喇叭在唱歌时,您可以放心的去触摸外表的每一个部份,保证没有一点触电的感觉。老实说,假若静电喇叭会电死人的话,怎么可能通过安全检验呢?

me2000 发表于 2007-8-11 12:23

静电爱用者的共通特质

到底静电喇叭有什么魅力,让某些人爱之入骨?相反的,也有许多人怎么听都不喜欢。根据我的观察与自己的经验,喜欢静电喇叭的人大多拥有二个相同的特质,一是他们大多很喜欢音乐,听音乐是他们每天不可或缺的事。第二个相同的特质是他们都懂得「舍」,舍什么呢?舍次要的音响表现而取主要的音乐表现。

就我认识几位长期使用静电喇叭的人(包括李富桂在内),他们几乎都很少更换音响器材,不过他们都拥有相当多的音乐软件。对于他们来说,音响器材最重要的功能就是发出令他们感到「舒服」的声音,而非令他们感到「震撼」的音效。如果您去静电喇叭用家那里听音乐,就会发现他们很少播放冲击性强的音乐。一方面强烈的冲击性正是静电喇叭的弱处;另一方面这些用家本身就不是很喜欢这些强烈冲击性的音乐。或许,我们可以这么说:喜欢静电喇叭的用家们,其个性刚好与静电喇叭的优点相契合。而不喜欢静电喇叭的人显然无法满足于静电喇叭的那些优点。

静电魅力在那里

Martin Logan静电喇叭的魅力在那里?我打电话问曾经使用Martin LoganMonolith喇叭长达10年的李富桂。他说没有箱音、音质纯、音色准确、音场透明、速度反应快、细微细节多、能够敏锐的显出搭配器材的特性等就是静电喇叭的魅力所在。李富桂所说的这些优点很中肯,不过我还要再加上一项优点,

那就是音场非常宽广深远,每件乐器的左右分离与前后层次也都很好。我又请教他,使用静电喇叭时,除了潮湿与灰尘之外,还要注意哪些事项?他以本身的经验告诉我,喇叭摆位要仔细,搭配器材比较困难,功率承受能力受限等是要特别注意的。

注意三个地方

为什么要注意喇叭摆位呢?因为静电喇叭是标准的Dipole双面反相发声,因此要特别注意是否有某些频段刚好被抵销或加倍。有些静电喇叭声音听起来很单薄,可能就是在中频段有声波抵销的问题。器材搭配为何会比较困难呢?李富桂说由于静电喇叭就像照妖镜,可以完全显露扩大机的声音特质。假若您使用的扩大机有严重音染,就会被静电喇叭暴露出来。此外,静电喇叭到底要用真空管推比较好?或者用晶体机来推比较好?我自己用真空管机推Quad 989时,搭配相当好。李富桂长期使用VTL 300真空管后级推静电喇叭,他也觉得很配。不过,您不要忘了Quad长期以来都以自家的晶体机推静电喇叭。我想,用晶体或真空管来推静电喇叭应该都不是问题,最重要的是音色搭配。

功率承受能力很重要吗?古老的静电喇叭我不敢说,若是以最近才听过的Quad 989,以及Martin

Logan静电喇叭来说,它们所发出的音压已经足够大部份人所需。比较要注意的是古典音乐中突如其来的大鼓或定音鼓的猛擂,流行音乐持续强烈的鼓声与Bass声反而都不是问题。

硬调空间不适合

除了以上三个李富桂所说要注意的问题之外,我自己还有一个发现,那就是硬调子空间并不适合使用静电喇叭。大部份的硬调空间会让静电喇叭产生「尖锐干瘦吵杂」的声音。假若您的静电喇叭发出这种声音,更换扩大机或线材是没有用的,这些动作顶多只会产生些微的改善效果,但却无力回天。唯一正确的作法就是改善空间调性,增加室内软质吸音物质,这样才能享受到李富桂所说没有箱音、音质纯、音色准确、音场透明、速度反应快、细微细节多、能够敏锐的显出搭配器材的优点。

me2000 发表于 2007-8-11 12:23

关于音响的几个问题

后级的任务是将前级输出的音频电压作功率放大,以期足够推动音箱。

作为一款现代化后级,应注意的地方包括输出功率、失真度、频率响应、讯噪比、阻尼系数、转换速度及动态能力多项。

以输出功率计,当然以最大不失真连续功率(RMS)标准来量度最为妥当。一般又会以8欧姆负载于1千赫处量度,这种方式可视为一个实际而保守的参数。失真方面,关乎瞬态互调失真及谐波失真。

在此阻尼系数,如前级般讲究,这是决定功放控制单元能力的一项指标;而回转率也与前级的作用相同。动态范围是指后级于额定功率与削波(严重失真)功率之间的距离比值。过去不少电源设计院计较优的功放,于说明书上会列出动态范围达2至3dB之数。这种动态余度对于额定功率输出较低的后级而言,实用价值最大。

后级功放的电路设计有多种,例如OTL、OCL及BTL。放大元件的应用又分电子管(胆)、晶体管(原

子粒)Hybrid(胆混石)及集成电路。按工作方式又有甲类、乙类、甲乙类等,不一而足。

可否列举一些能互换的常用电子管型号?

电子管产地遍及全球,分别来自中国、前苏联,也有东欧及美国等地方。其功能分别用于电压放大,功率放大及宽频带电压的放大。

电子管互换表

1.12AX7,6N2,5751,ECC83,4004

2.12AVFA,6N10,6189,ECC82,4003

3.6DJ8,6922,6N11,E88CC,ECC84 ,ECC88

4.6CA7,6550,69279,KT88,KT100,EL34

5.Bbq5,7189A,68-14,EL84,CV2975

6.6CGF,6N6

7.300B,4300B

me2000 发表于 2007-8-11 12:24

音响系统如何取得生动活泼的声音效果?

音响系统要重播生动活泼的乐器及人声,功放,喇叭线与音箱的配合可被视为一个整体。

音箱是整套系统唯一可发声的环节。当中低音单元的振膜,相较于中、高音质量最重,故惰性最大,前进后不容易瞬速静止,然后往相反方向移动。解决办法除了改良音箱整体设计外,不离使用一台具高阻尼系数(或称相配)的功放加以策动。

要计算功放的阻尼系数,必需以本身输出阻抗值除以音箱的阻抗值(例如8欧姆)。比方说功放阻抗为0.05欧姆,即代表阻尼系数为160;4欧姆扬声器只剩下80。事实上,功放与音箱的阻抗值,跟随频率升降而改变,这还未将喇叭线的电阻值计算在内,故此阻尼系数更低。

假设喇叭线有0.7欧姆电阻值,加上功放的0.05欧姆即成为0.75之数,当除以音箱8欧姆后,就只乘下大概11的阻尼系数。当音箱为4欧姆时更低至5左右,实际应用上与功放说明书上,列出的数值相去甚远。

由些观之,音箱的单元惰性高(高Q值),功放与喇叭线的内阻必定要低,才能取得较佳的单元控制力,反之音盆轻,反应快,甚至乎整个音箱设计皆倾向于低Q值,便合适一般阻尼系数低于20的胆机。的而且确有些音箱要配合阻尼系数低至25的胆机,才发出美妙的声音来。

至于阻尼系数应为若干才算最理想便没有"官方答案",很多情况下主观喜占了相当大的比重。但总的来说,音响系统声音活泼生动才能接近真实,令人听得起劲。

可否说明正确的摩机论据与做法?

摩机需根据理论去实践,并且对不同器材施以不同手段。

(A)CD机:一般廉宜CD机多使用精确度较差的运算放大集成电路,而这部分正好是影响声音的关键所在。故需要为它们换用高速、低噪声与宽频的运放集成电路。频宽要达到3MHZ或以上,这是基于数码讯号流经数/模转换器后,音频讯号会产生大量超高频噪声,而低通滤波器的职责是滤去这些超高频噪声。倘若频率不够阔也不线性,音频范围(20KHZ以下)会回应这些非线性超高频而带来调制失真,声音生硬。

规格容许的情况下,适当加大静态电流,让工作状态接近甲类,声音更甜美动听。同样地,在元件耐压允许下加大电压,改善低电压电源工作性能。分置独立供电部分予模拟电路,并采取多重绕组,分别为各部分供电,从而能减数/模电路之间的干扰,也可藉此增强电压。假若电源变压器是装设于印刷线路板上,就需要将它拆除,安装给远离数/模转换器的机壳底板上。

将电源电解质电容器数值予以加大,且并联低数值金属聚丙烯电容器,令声音能量充滞,高频开扬模拟电路电源退交连电容器及输出交连电容器换用高质量品种。线路许可的话,倒不如直接废除输出交连电容作直接交连。声音会更干净音染更低。

(B)前级:同样更换发烧级运算放大器改善供电系统。后者是提升电压,增强动态,将滤波电容器及环型变压器的容量加大,档次亦要很高,并且采用并联稳压或直流伺服稳压供电,另外,退交连电容器、交连电容器及电阻器等,也可选择补品,能改善讯噪比。分析力及音场重整。

(C)后级:基于大电流与高电压工作,电源供应尤为重要。改用大型环型变压器及滤波电容器,同时并联一枚小电容器在后者两端,同时并联一枚小电容器在后者两端,这对于低频能量和控制力,即连高频分析力也甚有帮助。

较廉价的功放,未级输出静态电流一般较低,故在散热器容许的条件下加大电流,将工作状态从乙类变为甲乙类。至于晶体管,可更换为音响专用的较大功率品种,但要注意耐压及配对等参数。

总的来说,正确的改进线路优点甚多,换用规格较佳的元件也能改善效果,但要切记不同品种的运算放大器及元件类,均有自己的音色,故摩机若除了要留意器材本身的既定规范,容许某程度的"摩"之外,还要小心逐步聆听比较,未必需大量使用同一品牌的元件,是为大原则。最后,为器材动"大手术"所费不菲,当中值与不值人言人殊,宜酌量之。

me2000 发表于 2007-8-11 12:25

漫谈电阻

无论是哪一种音响器材,内部线路板上最常见的电子组件非电阻器莫属,今天我们就谈一谈什么是电阻器。在常温之下无论是液态或固态的物体,皆有一定的阻抗存在,这个阻抗便可称为电阻。电阻的大小和材料的结构、纯度与温度有很大的关系,良导体能通过的电流大所以电阻小,绝缘体能通过的电流小故电阻大,上述由欧姆定律I=V/R(电流=电压/电阻)可得知。当温度变化时阻抗的增加或减少,将视材料而有所不同,例如我们常听到的超导体实验,就是利用物质于温度变化时所做的阻抗实验(于极低温时成效较佳),阻抗愈低能量的损耗就愈少,也就愈符合环保与经济要求。一般而言,绝缘体的电阻随温度增加而减少,导体则恰好相反。

电阻器的分类有很多种,如果依工作特性、结构、用途、功率消耗与误差百分比约着眼,可分为固定电阻器、可变电阻器、半可变电阻器与特殊用途电阻器等四种。无论是何种电阻器,皆是以导电材质制成的电子组件,运用最广的有固定与可调两种。常见的"固定电阻器"经组合包装后,其两端露出金属端子,以便焊接于线路板上,其主体上并以色环标示电阻值与误差值。"可变电阻器"则是于固定电阻器上加上一个可变动的部分,以调整其电阻值。可变电阻的阻抗标示方式不同于固定电阻,是以数值直接标示书写于电阻器上,像我们使用的音量旋钮便通常是可变电阻器。"半可变电阻"其实也可以视为可变电阻,二者主要的差别,在于可变电阻需经常调整其电阻值,因此制成可转动的旋钮型态﹔半可调电阻因不需经常改变其电阻值,或经调整后即不需改变,因此是以转轴带动滑片以调整电阻值,其转轴很短甚至无转轴,经常需要用起子才能转动。"特殊电阻"这一类的阻抗数值可受外界温度、光线、磁场、湿度、电压、电场、机械压力等因素影响而改变,例如市面上销售的室内小夜灯,就有一种是以光线的强弱来开启灯杀,这种夜灯便是运用光敏电阻,来控制灯杀的开关。

接下来,我们将就上述四种电阻器逐一分期说明。

固定电阻器

"固定电阻器"可分为︰

金属类 - 线绕电阻器、金属披膜电阻器

碳素类 - 碳膜电阻器、碳膜固态电阻器

半导体类 - 光敏电阻、热敏电阻、气敏电阻、变阻器

特殊电阻类 - 航天电阻

固定电阻器的外观尺寸与披覆颜色,随各家厂商而有所不同,常见的披覆颜色有棕色、蓝色、土黄色等。固定电阻器的数值大多是以色码来表示数值,通常电阻器上印有四个色环,每一个色环颜色皆代表不同的数值(如附表),第一个色环代表第一位数,第二个色环代表第二位数,第三个色环代表第三位数,称为倍数或者是乘数,第四个色环代表电阻器可能的误差值。

举例而言,某电阻的色环颜色为第一色环"棕"、第二色环"黑"、第三色环"红"、第四色环"金"。按照下列色环对照表可得知,"棕"代表1、"黑"代表0、"红"代表10的二次方、"金"代表误差正负5%,因此这个电阻器的电阻值为10╳10二次方Ω正负5%=1000Ω正负5%,即为1KΩ正负5%。

金属类电阻

金属类电阻共分线绕电阻与金属被膜电阻二种,其中线绕电阻是以很细的金属导线绕在圆形或扁形的绝缘体上,绝缘体通常为白瓷管,再以合成树脂、珐琅等材料将绝缘体密封。线绕电阻分为功率型、低功率型以及精密型等三类,最主要的作用为降低电阻或分压线路中之电阻,或者是电源之泄放电阻。

金属被膜电阻在特性上比线绕电阻改良许多,尤其是在高频的运用上,虽然金属被膜电阻不像线绕电阻一样能忍受大功率,但是因为它的体积小,阻值可制作得很大,因此常运用于小体积的精密电器产品上,如计算器、电视游乐器等。金属被膜电阻可分为下列三种︰合金被膜电阻、氧化金属被膜电阻与其它金属

膜。合金被膜电阻的有效被膜厚度愈薄,其电阻系数也就愈大,实际上合金被膜电阻并不是纯电阻,而是带有一点半导体性质,所以在相同的背景温度与消耗功率下,阻值愈高者其稳定度也就愈差。另外氧化金属被膜电阻的特点是在高温底下亦相当稳定,使用时电流杂音小、高频特性尚可,但会产生高温因此需注意周围的零件配置。

碳素类电阻

碳膜电阻可算是运用最久与最广的电阻,它的稳定度佳、价格便宜,所以使用得非常广泛。常用的碳膜电阻分为高温分解式碳膜电阻,与沉积式碳硼膜电阻二种。高温分解式碳膜电阻制作方式是从碳水化合物中提炼出瓦斯,再将瓦斯熏在瓷管表面,并置于1000度-1200度的高温中使其分解,如此瓷管将会有一层碳的结晶物附着其上,而形成一层电阻膜。另外,沉积式碳硼膜电阻制作方式与高温分解式碳膜电阻大致相同,不过在碳沉积时加入三氯化硼,将少量的硼与碳一起沉积而成,由于以上二种电阻皆是以沉积方式制成,因此也可称之为沉积式碳膜电阻器。

碳膜电阻的最大特点是价格便宜,而且稳定度高,所以运用得相当广泛。但其最大的缺点为耐湿性较差,因为碳遇到湿气即会氧化,若其氧化后再加上负载,则电阻会因湿度的升高而发生断路,因此必须以铸壳或陶瓷外壳加以保护。

碳素固态电阻不是以碳膜附着于绝缘体上,而是将碳素压成棒装的固体,再加上绝缘披覆与引线而成。由于引线与绝缘涂层可由模具一次做成,因此这种电阻相当适合大量制造,且价格相当低廉。碳素固态电阻的质量很轻,结构紧密,且具有相当广泛的阻值范围,使用得相当普遍。此种电阻可分为绝缘型与非绝缘型,在电子设备中通常使用绝缘型电阻。碳素固态电阻对高频的特性相当良好,因为在高频时其有效电阻反而下降,与一般电阻器频率增加电阻值即随之增加的特性恰好相反。

水泥电阻

水泥电阻最主要运用于大功率电路中,其结构是将线绕电阻器的结构放入长方形瓷框中再用耐热水泥充填后密封,外型像是一个白色长方型水泥块。它的特点是不怕机械力量的震动影响、耐震、耐热、耐湿、散热性良好。

me2000 发表于 2007-8-11 12:25

漫谈失真

失真是一个令人害怕讨厌的词语, 大概是由于它的负面意义吧。一直以来,在电声产品上,失真都是一个重要的指针。但对发烧友来说,失真的真正意义在哪?当一个讯号经过传输,或经过放大,理论上来说要保持和原讯号完完全全不变是不可能的,故此,从技术的角度看,人们总希望它的失真度越小越好。可是近年大部份资深发烧友都会同意,在听感上来说,失真度这指标却不能有效地反映器材的好声程度。如方才说过,既然讯号经过传输或放大不能保持和原讯号完完全全一样,其间一定出现一些变化,这变化是什么呢?大体不外乎"加多"和"减少"。"减少"这概念较容易明白,就是原讯号在传输或放大过程中遗失了一些东西。至于"加多"就有较复杂的内容了,简单来说,就是在传输或放大过程中,衍生出一些既源于原讯号又有别于原讯号的东西。由于这些都是原来没有的,故也只能是失真的部份内容。

在听感上,这类衍生物有时竟会有神奇的作用,譬如说,一些新增的谐波,明显起了像味精的作用,

喜欢的人会觉得加了声音更音乐化。又如话筒效应(microphonic)又提供了一些发烧友用作调音的一种有效手段。甚至乎相移(Phase Shift),这个一听起来都不像好东西的,也可以巧妙地被利用来美化音色。在录音过程中加进激励效果使低音冲激力更大更结实,就是运用了相移这东西。于是有一派以最后听音为取舍的,大叫失真无伤大雅,因为如果把失真换成"美化物",或"味精",相信人们对之的抗拒会大为减少,而另一派主要是工程师,却大声说:"数字胜于雄辩"(numbers don't lie)。这样的争论,旷日持久,究竟谁是谁非? 这里,我们先不用发烧友这概念,因为一般人可能会倾向于认为发烧友是一些走火入魔的怪人,上面的争论会对什么人有最大的影响呢?答案是喜欢音响的人,这也就是英文的Audiophile,音响爱好者了。

至于谁是音响爱好者,这本身已有很大争议。我想这应该涵盖一切喜欢音响技术和听音乐的人,而不应把它局限于拥有价值连城的Hi End器材的一小撮。相信大部份读者发展音响的爱好,往往都是由喜欢听音乐开始,而最先接触或使用的都会是一些普及的器材。我还记得在小三的时候跟?邻家的大孩子一起自己弄矿石收音机,那时候从晶体耳塞传来的音乐,至今难忘,当然晶体耳塞根本不能提供什么低频,可是它的中频瞬变,与及高音的表现,都不是一般晶体管收音机的小扬声器所能比拟。虽然后来才知道AM广播的高频只有7 KHz,连谐波也不会高到10 KHz,但当年的简单矿石收音机却开始了我往后漫长的发烧历程。还记得多年前到香港电台听他们第4台的每月音乐会,在不太大的一个录音间里听钢琴独奏。当时的感受非常美好,音色通透自然。于是心?想,如何在钢琴前放两支胆咪,第三支挂高以收取堂音,在混音之前经胆器材调校…想得很远。但当回到现场的乐音中,我很快明白,要重现当时的效果,要重拾当时聆听者的感受,恐怕人类还要作很大的努力。说回先前的争论,以发烧友为主的一派,大可称之为主观主义者(subjectivist),他们坚持现今对失真的了解和运用还很有限,故失真的测量并不是故事的全部。至于以工程师为主的一派可称为客观主义者(objectivist),他们坚持以科学手段去测量和区分器材的优劣。现实可能确是由矛盾组成,综观各种失真的被发现,被测量,以至人们找出对策,诸如总谐波失真,当改善它之后,原来带来了TIM瞬态互调失真;又譬如CD的jitter,被发现和对付,还只是很近年的事。至于两派谁对,我想两者各有各对,因为他们争论的不是同一样东西。发烧友其实不自觉在听感上找寻自己的喜好,而工程师却力图客观地找出衡量器材的标准。故此争论的答案是客观测量标准并不能决定主观的个人喜好。

有人喜欢无源前级,有人反对,一下子大家都升级到什么音乐感等抽象名词上争论,其实这只是两种个人喜好的争论,是两种不同的主观立场。

说实在一点,他们争论的,其实不是音乐回放的表现,而是两种前级本身的特有音色。究竟讯号经过这两者,有多少"加多",有多少"减少",工程师插到其中,又能否排难解纷,抑或是会使浑水更浑。这一切,由读者自己下答案好了。

难解的两难和矛盾

无名氏 发表于 2007-8-11 12:25

好文,学习中:2fsfsf :2fsfsf :2fsfsf

me2000 发表于 2007-8-11 12:26

振膜质量

先前提到,要降低系统共振频率最简单的就是增加振膜质量;当然,这是很容易做到的。但是,为了高频响应和发声效率,这样又算不上是好方法。那幺,我们不要硬碰硬,让单体在低频时「看到」较重的音盆,而在高频时就只看到较轻的音盆。

听起来有点诡异?

这是全音域单体的设计中非常巧妙的一招,也就是「机械性」分频。实际操作时的情况是,低音时,整个音盆一起动作,渐往高频时,利用盆分裂特性使得音盆较重且声阻较大的外围「来不及」跟着一起动。此时,真正随着音圈动的只剩下较内圈部分,相对上这个「局部」区域的音盆比起整个面积当然就轻得多了。所以,这样一来,随着频率的不同,音盆「实际有效」的运动质量就不同。如此,高频到低频的响应就可以同时达到。

刚刚提到的「盆分裂」,说来轻描淡写,但稍微想想就可以体会到其中的重重困难。如何在某个频率以上使得一部分的振膜「来不及」跟着音圈动就很难控制了,再者,要让这些部分「既然跟不上就干脆别动」也不简单,因为,最怕的是跟不上音圈的驱动而自己乱动,徒然增加音染。而且要注意的是,单体实际在播放音乐时其中包含的频率很广,且时时刻刻在变。所以一旦这样的盆分裂不在控制之内就可以想见其失真之恐怖!

驱动力

先前有提到,若要让高频延伸,势必要有很强的驱动力来使音盆的加速度达到高频的需要。而驱动力的来源有二:音圈及磁力系统。把音圈的圈数绕多些就能产生较大的磁力,以便和磁力系统相互作用而产生较大的驱动力,但圈数多就意味着电感量的提高和质量的增加,这二者又都不利于高频,所以此路不通,音圈的设计仍要取一妥协。在此,「小而美」显然比「大而不当」要好得多。

再来,我们只好增加磁力了。虽然先前提过,强大的磁路系统会造成很强的阻尼而使得自由共振频率不易降低,但是为了要达到高频发声所需的振膜加速度,磁力的强度还是要比一般单体强上许多,才有办法将「不轻」的音盆(注4)推出那种级数的加速度值,否则就和一般的中音单体没多大分别了。至于阻尼过度的问题,只好由放松机械性阻尼来做补偿了。

系统整合问题

不就只有一只单体,何来的「系统」整合?

这里的系统整合指二方面:一是音域平衡的微调,二是装箱调谐的设计。此二者常相互牵动彼此。

理论上,一个理想的全音域单体应该是在装箱后或固定在适当的障板上就可以直接连上后级,没有任何阻隔的发出天籁。但想想先前提过的种种进退两难的窘境,在设计者绞尽脑汁、呕心沥血,好不容易做出一只能够全音域发声的单体后,你还希望它能「全面性」毫无妥协的发出你想要的一切?请记住,在各种的进退两难中,绝大多数的出路便是「妥协」。

若你对Stereophile熟悉的话,应该对他们刊出的各种器材测试图谱有些印象。一般来说,扩大机的频率响应图在20Hz─20KHz之间几乎就像是尺画的一样平直,若是管机,顶多在频域二端有些微的滚降;而喇叭的频率响应图谱就崎岖得多,用坏掉的锯子来画还比它规则些。若再看衰减瀑布图和离轴响应,那就更糟糕了,各种奇形怪状的高山深谷遍布全频段。

为什幺喇叭的频率响应没办法作到像扩大机一样的平直?因为喇叭是机械性动作的组件,一动起来各

个部分的能量传递、释放和储存会非常复杂,且相互关联。如此,免不了会存在许多的能量堆积或相互抵消的状况 ─ 能量堆积处形成共振峰;相互抵消处形成凹陷,这幺一来崎岖的频率响应就不足为奇了。

较佳的情况是崎岖的形态较缓和且均匀,如此可避免集中在一个特定的范围而形成明显的音染。若起伏很大或集中在一处就不妙了,强烈的音染不但扭曲了音域平衡,其共振峰处的能量不但较强,而且久久不散(常可在瀑布图上看出),所以会严重掩盖其本身和临近频段的解析力和微动态表现,就算用高Q值陷波器来加以衰减还是无法解决不干净的残余共振。

另外,单体的阻尼状况也常会表现在频率响应曲线的走势上。若高端上扬,则是中低音域的阻尼相对上有些过度,听感上便是紧瘦结实,稍偏明亮;若是反过来低端上扬,则是中低音域的阻尼相对上有些不足,听感上就较为肥胖宽松而昏暗。

说了这幺多喇叭单体的「黑暗面」,不外是要提醒大家,就算历年来各「传奇」的全音域单体各自在不同的领域理皆有其「超级制作」之处,但在无可避免的众多妥协之下,免不了有其取舍,而很难做得面面具到。就连乐器的制作都要投注极大的心力,才能获得音色的完美和全音域响度的平均,更何况是喇叭单体这个「二线」的模仿者。

所以,一个全音域单体,虽可以做到全音域发声,但不见得一定平直。常见的问题有:中音部分(有些是中高,有些是中低)有宽而缓的凸出,造成听感上某种程度的音染;还有部分是高端有缓和的滚降,造成听感上较为昏暗;当然还有过度阻尼造成的低端滚降,听感上自然是又瘦又紧,低音没有量感。

若是频率响应有些微的凸出,而这个音染又令人无法忍受,只好用一个陷波器来将这个凸出压平。若症状不严重,这个方式多半能有令人满意的结果。别瞧不起这样的组合,虽然这样一来后级到单体之间有了一些「阻碍」,但这算只是频率响应的修整,比起多路分音的喇叭中频率响应复杂的交迭和扭曲的相位,这还是单纯多多。而且,这类陷波器线路其实在许多喇叭的分音器上都可以找到,所以也不算什幺见不得人的东西。

若是高端滚降,则多半是因为相对上磁力系统不够力所致,或者是音盆太大,用上「机械分频」的技俩还是拖累太重,如早年的12吋甚至15吋的全音域单体或多或少有这样的问题。此时,除了加个高音单体,别无他法。你会说,唉,这算是哪门子的全音域!别急着下定论,若妥善处理,将高音单体的响应从16─18KHz处(或甚至更高),以每八度-6dB的斜率缓缓切入,还是能够得到很好的结果,因为分频衔接处已避开了人耳敏感的音域,且一阶分音能保持相位一致,所以还是保有全音域的「大部分」好处。

(若你手上刚好有Altec 412C,又嫌它们没高音,请赶紧通知我,我很有兴趣购买。等我弄出好声,你就别想再买回去)

最后一种情况就是低音部分的滚降,这类全音域单体具有较强的阻尼,低音的听感常紧缩而短促,好处是细节清晰。此时若能使用适当的装箱调谐或甚至用号角负载来提升低音部分的声阻而提高效率,整体响应便很理想。若制作得当,这样的组合能提供最佳的全音域发声表现。

既然提到了装箱调谐,我们就顺势谈下去。一般市售的喇叭,90%以上都是密闭音箱或开口调谐(一般俗称『低音反射式』)。只要是箱型喇叭便大致脱不了这二种设计及其衍生物,只有少数例外。

对于全音域单体来说,应该要使其低音域发声时的振幅愈小愈好。因为振幅愈大,不仅低音本身的失

真大增,同时中高音更大受影响。想象一下大振幅全音域发声时会是怎样的情形:中高音的小幅度快速运动「骑」在大幅度慢速的低音运动上,中高音的振动时而向你靠近;时而离你远去,可想而知会带来很高的互调失真和都卜勒失真。虽说任何单体都会面临类似的问题,但全音域单体的工作频域远大于其它单体,所以这种情况会更明显而应极力避免或减少。

me2000 发表于 2007-8-11 12:26

在刚刚提到的二种主流装箱方式中,开口调谐应是较适合全音域单体的,因为这种方式可在系统共振频率附近(一般是30─50Hz,视设计情况而异)大幅减少音盆的冲程。如此便一举三得:失真降低、承受功率较高、发声效率也高。因为这个缘故,绝大部分的全音域单体都可以用这种装箱方式得到大致上不差的效果。

另外,有些纯粹主义者认为,这幺好的单体装在箱子里会被箱体共振所玷污,所以不用箱子,直接装在开放式障板上。某些本身低音部分就足够的单体便适于如此使用,可以获得最无染纯净的声音,如WE/Altec 755C。据称,其中音瞬时快若闪电,比之静电喇叭毫不逊色,又有更佳的动态表现。但这个方式有一些缺点,首先当然是占地太大,因为系统的低音延伸取决于障板面积,为取得适当的低频响应,小则需要1公尺见方,大则没有上限,要将墙壁挖二个洞来装也可;再来是效率和承受功率都会较低,低频响应也会较弱;最后是双面发声会使得空间因素更形复杂难解,而二片大门板矗立眼前实在也不容易被大多数人接受。

最后,便是最复杂的号角负载方式了。关于号角的种种,我们择期再详谈,现在只能大略的介绍一下。简单的说,号角就是一个呈喇叭状展开的管道,宽的这边称为「号角开口」,窄的那边称为「喉部」。号角的形状会造成喉部的声阻大于开口,使得位在喉部附近的单体振膜和空气分子间有很大的压力,也就是说这之间的能量可以的耦合得很好,因此发声效率很高。

使用背载折迭号角的型式,在适当的制作下,中低音到低音部分的效率会有效的提升,刚好和之前提到的阻尼过度的单体能有几近完美的配合。

me2000 发表于 2007-8-11 12:26

频率补偿不当会造成什么后果?

在频率响应的某一频段出现峰谷时,特别在3~5kHz和200~300Hz,将引起音质的明显变化。在频率响应曲线低频段和中低频段出现+5dB以上峰值时,会使音色混浊,甚至出现特定频率的"嗡"声,中高频段出现峰时将有"金属声",峰值出现在高频段时将有"咝"声。频率响应曲线出现谷时,要在-10dB才会有音质变化。

低频段对声音强度影响极大,如超过+5dB声音变得混浊不清,严重时出现"嗡"声。200~500Hz中低频段决定声音力度,如超过+5~10dB声音变得模糊,清晰度下降,下跌-6~10dB声音缺乏力度而显单薄,音色硬而窄。1~3kHz中高频段对明亮度、清晰度和临场感有重要作用,此频段超过+3~5dB会使声音变硬,超过+5~10dB会出现金属声,下跌-3~5dB会使音色失去明亮感,下跌-5~10dB声音发闷不清晰。5kHz以上频段是声音特色的反映,如高频6~7kHz超过+6dB,声音变得尖锐刺耳,语言中齿音严重,下跌-10dB以上音色明显变暗。

本文标签: 音箱信号功率喇叭