admin管理员组

文章数量:1584366

1、 迈向高阶自动驾驶,汽车之“眼”激光雷达为优中之选

1.1、 自动驾驶向高阶演进,感知器件先行

智能化推动行业变革,跨界融合频现,高阶自动驾驶拐点将至。汽车“电动化、智能 化、网联化、共享化”的趋势已经成为行业共识。其中,智能化技术包括搭载先进传 感器等装置提高智能驾驶水平、运用 AI 增强人机交互体验等。智能化的普及推动汽 车由传动的出行工具向智能移动空间演进,是当前汽车产业发展的主要方向。特斯 拉引领的汽车电子电气架构、软件架构和通信价格的升级,使得汽车智能化升级的 方式由“累加 ECU”转向算力和数据模型的持续迭代升级。汽车智能化升级的边际 成本递减使得自动驾驶在 L3 以后升级的速度将加速。同时软件定义汽车带来的软件 收费模式以及汽车软件生态圈的逐步建立使得汽车行业由传统制造业向科技行业转 型升级。智能汽车也吸引了众多互联网厂商和手机厂商等纷纷入局,或自身下场造 车,或与传统主机厂跨界合作。例如,华为基于深厚的 ICT 技术提供完整的智能汽 车解决方案,发布高性能 MDC 智能驾驶计算平台、激光雷达与多合一电驱动系统等 核心零部件,赋能智能汽车领域的发展。百度、阿里、腾讯、字节跳动、滴滴、小米、 大疆、OPPO 等亦宣布加入智能汽车行业。纵观各大整车厂的推进节奏,特斯拉、大 众、福特、蔚来、理想、小鹏、上汽、长城等等,均已计划自 2021 年开始布局 L3 及 以上高阶自动驾驶,L3 级自动驾驶升级的元年即将到来。

 

 

 

感知作为智能驾驶的先决条件,其探测精度、广度与速度直接影响智能驾驶的行驶 安全。智能驾驶将汽车的驾驶能力及驾驶责任逐步由人转移到汽车,其主要包括感 知、决策和执行三大核心环节。其中,感知环节相当于人的眼睛和耳朵,主要通过车 载摄像头、激光雷达、毫米波达等各类车载传感器在行车过程中完成对环境及车辆 的感知、搜集周围环境数据并将其传输到决策层;决策环节相当于人的大脑,主要通 过操作系统、芯片与计算平台等对接收到的数据进行实时处理并输出相应的操作与 指令任务;执行端则相当于人的四肢,将接收到的操作指令执行到动力供给、方向控 制、车灯控制等车辆终端部分。综上所述,感知环节作为智能驾驶的先决条件,其探 测精度、广度与速度将直接影响决策层的判断与执行层的操作,在智能驾驶中的地 位至关重要。

 

1.2、 纯视觉+算法方案壁垒高筑,特斯拉一枝独秀

单一传感器难以满足智能驾驶全场景需要,多传感器融合方案成为主流。车载传感 器是感知环节的重要组成部分,主要包括车载摄像头、激光雷达、毫米波雷达、超声 波雷达等。其中,车载摄像头成像清晰,成本低,但探测距离短,对环境光照要求较 高,识别稳定性欠佳。毫米波雷达通过测量回波的时间差算出距离,其优势有探测性 能稳定、作用距离长、可穿透烟、雾等,具有全天候、全天时的特点,但受分辨率限 制,难以分辨近距离物体,无法识别行人。超声波雷达测距方式与毫米波雷达相似, 区别于应用波为超声波,其在短距离测距中具有显著优势,成本较低,但短于长距离 测量,且易受天气影响,仅在泊车系统中的应用较为广泛。激光雷达精度较高,探测 距离远,可在夜间使用,但目前仍在存在成本较高、在雾霾和雨雪等恶劣天气下探测 受限等问题。单一的车载传感器难以同时保障探测精度、距离,且无法摆脱对环境的 依赖,因此,多传感器融合已成为主流趋势。该方案在车身四周及顶部配置多类传感 器,可有效保证传感器工作实时性及稳定性,大幅提升探测精度与距离。

 

 

 

视觉方案所获数据与人眼感知的真实世界更为相似,轻硬件、重软件的特性在 L3 级 以上自动驾驶对算法和 AI 能力要求高。视觉主导方案主要依靠摄像头拍摄的画面, 辅以毫米波雷达、超声波雷达等传感器捕捉数据并通过图像处理与机器学习的结合 对周围环境进行计算与分析,最终指导汽车做出决策。由于摄像头、超声波雷达的价 格低廉,因此视觉方案成本优势明显且更易通过车规测试。此外,摄像头所获的图像 数据与人眼感知的真实世界更为相似,形态上最接近人类驾驶,高分辨率、高帧率的 成像技术也使得感知到的环境信息更为丰富。然而,摄像头在黑暗环境中感知受限, 精度及安全性有所下降。且由于视觉方案在硬件要求降低的背景下,其对软件的要 求明显提高,即需要依靠强大的算法才能保证图像处理以及命令下达、处理的效率。在 ADAS 阶段,决策权仍在在驾驶员手中,其对汽车的软件算法要求相对较低,以 Mobileye 为代表的视觉方案被多数整车厂采用。然而,随着智能驾驶迈向 L3 及以 上,自动驾驶平台将接替人的大脑进行驾驶决策,对算法和AI的能力要求明显提升, 目前仅特斯拉、百度、Mobileye 等具备软件和算法基因的厂商完全采用或兼顾视觉 方案。纯视觉解决方案多以黑盒方案为主,且 L3 及以上自动驾驶升级难度大,传统 整车厂搭载意愿不强。

特斯拉凭借“影子模式”与超强算法构筑自动驾驶迭代闭环,其他车企难以复制。特斯拉对汽车的定义是极简化、科技化,其一直在汽车上做减法,对车辆线束长度、 零部件数量、生产制造工序都进行大幅下调。在感知方案的选择上,特斯拉贯彻成本 更优的视觉方案,在 Model3 上采用 12 个超声波雷达、8 个摄像头和 1 个前置雷达 收集周边信息,通过其强大的融合算法迅速构建车辆周边的 3D 模型,在汽车行驶中 做出快速决策。由于 2D 图像对物体的左后角的检测(车长的判断)存在一定盲区, 车辆尾部的倾斜与向上收窄的设计加剧了对整体宽度的低估,因此,视觉方案的关 键便是通过算法根本上解决视觉信息的准确处理,将摄像头捕捉到的 2D 平面图像转 换成精确的 3D 模型。特斯拉在自动驾驶领域的全栈自研以及其在“模式识别模型” 领域的领先地位(即数据规模庞大、数据覆盖多样及数据场景真实)成为其贯彻视觉 融合方案的护城河。此外,特斯拉的“影子模式”可有效控制算法训练成本,这一模 式下数据搜集系统如实时跟随驾驶员的“影子”,始终观察外部环境与驾驶员的动作。若在某个特定场景中驾驶员的操作与“影子”的预判不符,则此次数据会传输到特斯拉的服务器中,对算法进行修正性训练,在下次同场景时予以更正。

百度、Mobileye 采用前装&视觉、Robotaxi

本文标签: 研究报告激光行业