admin管理员组

文章数量:1530847


2024年7月3日发(作者:)

ATX电源结构简介

ATX电源电路结构较复杂,各部分电路不但在功能上相互配合、相互渗透,且各电路参数设置非常严格,稍有

不当则电路不能正常工作。下面以市面上使用较多的银河、世纪之星ATX电源为例,讲述ATX电源的工作原理、

使用与维修。其主电路整机原理图见图13-10,从图中可以看出,整个电路可以分成两大部分:一部分为从电源输入

到开关变压器T3之前的电路(包括辅助电源的原边电路),该部分电路和交流220V电压直接相连,触及会受到电击,

称为高压侧电路;另一部分为开关变压器T3以后的电路,不和交流220V直接相连,称为低压侧电路。二者通过C2、

C3高压瓷片电容构成回路,以消除静电干扰。其原理方框图见图13-1,从图中可以看出整机电路由交流输入回路与

整流滤波电路、推挽开关电路、辅助开关电源、PWM脉宽调制及推动电路、PS-ON控制电路、自动稳压与保护控制

电路、多路直流稳压输出电路和PW-OK信号形成电路组成。弄清各部分电路的工作原理及相互关系对我们维修判断

故障是很有用处的,下面简单介绍一下各组成部分的工作原理。

图13-1 主机电源方框原理图

1、交流输入、整流、滤波与开关电源电路

交流输入回路包括输入保护电路和抗干扰电路等。输入保护电路指交流输入回路中的过流、过压保护及限流电

路;抗干扰电路有两方面的作用:一是指电脑电源对通过电网进入的干扰信号的抑制能力:二是指开关电源的振荡

高次谐波进入电网对其它设备及显示器的干扰和对电脑本身的干扰。通常要求电脑对通过电网进入的干扰信号抑制

能力要强,通过电网对其它电脑等设备的干扰要小。

推挽开关电路由Q1、Q2、C7及T3,组成推挽电路。推挽开关电路是ATX开关电源的主要部分,它把直流电

压变换成高频交流电压,并且起着将输出部分与输入电网隔离的作用。推挽开关管是该部分电路的核心元件,受脉

宽调制电路输送的信号作激励驱动信号,当脉宽调制电路因保护电路动作或因本身故障不工作时,推挽开关管因基

级无驱动脉冲故不工作,电路处于关闭状态,这种工作方式称作他激工作方式。

本章介绍的ATX电源在电路结构上属于他激式脉宽调制型开关电源,220V市电经BD1~BD4整流和C5、C6滤波

后产生+300V直流电压,同时C5、C6还与Q1、Q2、C8及T1原边绕组等组成所谓“半桥式”直流变换电路。当给Q1、

Q2基极分别馈送相位相差180°的脉宽调制驱动脉冲时,Q1和Q2将轮流导通,T1副边各绕组将感应出脉冲电压,

分别经整流滤波后,向电脑提供+3.3V、±5V、±12V 5组直流稳压电源。

THR为热敏电阻,冷阻大,热阻小,用于在电路刚启动时限制过大的冲击电流。D1、D2是Q1、Q2的反相击穿保

护二极管,C9、C10为加速电容,D3、D4、R9、R10为C9、C10提供能量泄放回路,为Q1、Q2下一个周期饱和导通

1 / 15

作好准备。主变换电路输出的各组电源,在主机未开启前均无输出。其单元电路原理如下图13.2所示:

图13-2 交流输入、整

流、滤波与开关电源单元电路图

2、辅助电源电路

整流滤波后产生的+300V直流电压还通过R72向以Q15、T3及相关元件组成直流辅助电源供电电路。R76和R78

用来向Q15提供起振所需的初始偏流,R74和C44为正反馈通路。

该辅助电源输出两路直流电源:一路经Q16稳压后送出+5VSB电源,作为电脑中主板“电源监控”部件的供电电

源;另一路经BD6、C29整流滤波后向由IC1及Q3、Q4等组成的脉宽调制及推动组件供电。正常情况下,只要接通

220伏市电,该辅助电源就能启动工作,产生上述两路直流电压。其单元电路原理如下图13.3所示:

图13-3 直流辅助电源单元电路图

3、PWM脉宽调制及推动电路

IC1(TL494)等组成PWM电路。PWM(Pules Width Modulation)即脉宽调制电路,其功能是检测输出直流电

压,与基准电压比较,进行放大,控制振荡器的脉冲宽度,从而控制推挽开关电路以保持输出电压的稳定,主要由

IC1 TL494及周围元件组成。其单元电路原理如下图13.4所示:

2 / 15

图13-4 PWM脉宽调制及推动单元电路图

TL 494的简单工作原理是:当IC1的VCC端{12}脚得电后,内部基准电源即从其输出端{14}脚向外提供+5V

参考基准电压(Vref)。首先,该参考电压分两路为IC1组件的各控制端建立起它们各自的参考基准电平:一路经

由R38、R37组成的分压器为内部采样放大器的反相输入端{2}脚建立+2.5V的基准电平,另一路经由电阻R90、R40

组成的分压器为“死区”电平控制输入端{4}脚建立约+0.15V的低电平;其次,Vref还向PS-ON软开/关机电路及自

动保护电路供电。

在IC1{12}脚得电,且{4}脚为低电平的情况下,其{8}脚和{11}脚分别输出频率为50kHz(由定时元件C30、

R41确定),相位相差180°的脉宽调制信号,经Q3、Q4放大,T2耦合,驱动Q1和Q2轮流导通工作,电源输出端

可得到电脑所需的各组直流稳压电源。若使{4}脚为高电平,则进入IC1的“死区”,IC1停止输出脉冲信号,Q1、

Q2截止,各组输出端无电压输出。电脑正是利用此“死区控制”特性来实现软开/关机和电源自动保护的。

D17、D18及C27用于抬高推动管Q3、Q4射极电平,使得当基极有脉冲低电平时Q3、Q4能可靠截止。

4、自动稳压电路

(1)+3.3V自动稳压控制电路

ATX电源在T1副边+3.3V输出端设置了二次自动稳压控制电路,通过改变L6可变感抗,控制3.3V输出电压精

确稳定。若输出电压上升,经R31、R30取样的IC4(WL431)Ur电位上升,Uk电位下降,Q11饱和导通。在T1副

边N2绕组L6侧交变矩形脉冲正半周期间D11截止,D13导通,Q11的c极电位0.7V;在负半周期间,D13截止,

D11导通,由Q11的e、c极饱和导通向L6注入的反向电流使L6可变感抗增大,导致D12整流输出电压降低。反

之,Q11导通程度减弱,注入L6的反向电流使L6可变感抗减小D12整流输出电压上升。图中R29、c25组成IC4

(WL641)的负反馈控制电路。

3 / 15

图13-5 +3.3V自动稳压单元电路原理图

(2)+5V、+12V自动稳压控制电路

由于IC1{2}脚(内部采样放大器反相端)已固定接入+2.5V参考电压,同相端{1}脚所需的取样电压来自对电源

输出+5V和+12V经取样电阻R33、R34、R35的分压。图中R39、C32组成误差放大器负反馈电路。此后将①脚与{2}

脚比较,+5V或+12V电压升高,使得{1}脚电压升高,根据TL494工作原理,{8}、{11}脚输出脉宽变窄,Q1、Q2导

通时间缩短,将导致直流输出电压降低,达到稳定输出电压的目的。当输出端电压降低时,电路稳压过程与上述相

反。

图13-6 +5V、+12V自动稳压控制单元电路原理图

6、自检启动(PG)信号产生电路

一般电脑对PG信号的要求是:在各组直流稳压电源输出稳定后,再延迟100~500毫秒产生+5V高电平,作为电

脑控制器的“自检启动控制信号”。

4 / 15

图13-7 自检启动(PG)信号产生电路

PW-OK产生电路由IC5电压比较器LM393、Q21、C60及其周边元件构成。

待机时IC1的反馈控制端3脚为低电平,Q21饱和导通,IC5的3脚同相端输入低电位,低于2脚反相端输入的

固定分压比(由Vref在R105和R106上的分压决定,为1.85V),IC5的第1脚输出为低电位,PW-OK向主机输出

零电平的电源自检信号,主机停止工作处于待命休闲状态。

开机的瞬间IC1的3脚电位上升,Q21由饱和导通进入放大进而截止状态,e极电位由Vref经R104对C60进

行充电,随着C60充电的逐渐进行,IC5的3脚控制电平逐渐上升,一旦IC5的3脚同相端电位高于2脚反相端参

考电压,IC5的第1脚输出高电平的PW-OK信号。该信号在开关电源输出电压稳定后再延迟几百毫秒由零电平起跳

到+5V,通知电脑自检启动成功,电源已准备好。。

在主机运行过程中若遇市电掉电或用户关机时,ATX开关电源+5V输出端电压必下跌,这种幅值变小的反馈信

号被送到IC1组件的电压取样放大器同相端1脚后,将引起如下的连锁反应:使IC1的反馈控制端3脚电位下降,

经R63耦合到Q21的基极,随着Q21基极电位下降,一旦Q21的e、b极电位达到0.7V,Q21饱和导通,IC5的3

脚电位迅速下降,当3脚电位小于2脚的固定分压电平时,IC5的输出端1脚将立即从5V下跳到零电平,关机时PW-OK

输出信号比ATX开关电源+5V输出电压提前几百毫秒消失,通知主机触发系统在电源断电前自动关闭,防止突然掉

电时硬盘磁头来不及移至着陆区而划伤硬盘。

7、软开/关机(PS-ON)电路

电脑通过改变PS-ON端的输入电平来启动和关闭整个电源。当PS-ON端悬空或电脑向其送高电平(待机状态)

时,电源关闭无输出;送低电平时,电源启动,各输出端正常输出直流稳压电源。

5 / 15

图13-8 软开/关机(PS-ON)单元电路原理图

PS-ON电路由IC10、Q7、Q20等元件构成。PS-ON信号控制IC1的4脚死区电压,待机时,主板启闭控制电路

的电子开关断开,PS-ON信号为高电平3.6V。IC10精密稳压电路WL431的Ur电位上升,Uk电位下降,Q7导通,

稳压5V通过Q7的e、c极,R80、D25和D40送入IC1的4脚,当4脚电压超过3V时,封锁8、11脚的调制脉宽

输出,使T2推动变压器、T1主电源开关变压器停振,停止提供+3.3V、±5V、±12V的输出电压。与此同时,因

Q7饱和,Q20也饱和,使得Q5基极(保护电路控制输入端)被对地短路,禁止保护信号输入,保护电路不工作。

当将PS-ON端对地短路或软开机(电脑向PS-ON端送低电平)时,IC10的Ur为零电位,Uk电位升至+5V,

Q7截止D25、D40不起作用,IC1{4}脚电压由R90和R40的分压决定,为0.15V,IC1开始输出调宽脉冲,电源启动

工作。此时Q20处于截止状态,将Q5基极释放,允许任何保护信号进入保护控制电路。

8、±5V、±12V直流稳压输出电路

T1副边降压绕组N2感应的矩形电压脉冲,一路经共阴极输出特性的肖特基二极管D12全波整流,得到单向方波

电压,经电感L7、L5平滑滤波,在直流负载电阻R31、R30上得到+3.3V直流电压。

6 / 15

图 13-9 +3.3V、±5V、±12V直流稳压输出电路

T1副边N3绕组感应的交变电压,经快速恢复二极管D6全波整流,一路经共模扼流电感L1-1、电感L4、C16

和R82高频滤波回路,输出+12V电压。

ATX开关电源冷却风扇被接在12V电压输出端上。另一路经快速恢复二极管D20,输出约25V直流电压,其值

大于辅助电源变压器T3接在N3绕组整流输出的最大电压,ATX电源启动后,由它向IC1和T2原边绕组提供工作

电压。

N3绕组感应的交变电压,另一路由D7、D8快速恢复二极管组成半波整流,经共模扼流电感L1-2、电感L3,

一路经三端稳压器7905、C17、R15降压滤波回路,输出-5V电源。另一路经C20、R14、D9整流滤波回路,输出-12V

电源。并联在N3绕组上的C13、R13尖峰吸收回路,能有效抑制当整流管截至时出现在N3绕组上的尖峰干扰脉冲。

9、+3.3V、+5V过压,-5V、-12V欠压保护电路

如上图13-8 所示中,R32、ZD4组成+3.3V过压取样电路,+5V过压取样信号一路加至ZD5,另一路加至R48,

作为欠压取样电路的偏置电压;由R46、R47、R48、D21组成欠压取样电路,-12V欠压取样信号,接至R47,-5V

欠压取样信号接至D21。ATX电源输出电压正常时,保护电路不影响IC1④脚死区控制电平。当出现+3.3V输出过压

时,稳压管ZD4击穿导通;+5V输出过压,稳压管ZD5击穿导通;-5V、-12V输出欠压,负电位的绝对值越小,在分

压器R48、R46、R47、D21的公共节点D22正极处所形成的监控信号电位越高,导致D22导通。过压、欠压保护信号

最终汇集在Q5的基极,只要取样信号有一路过压或欠压,Q5导通,C极0电位,Q6导通,基准电压5V经Q6的e、

c极,一路经D23、R44加至Q5的b极,加强Q5的导通,另一路经D24加至IC1④脚,封锁⑧、⑾脚脉宽调制输出,

使T2、T1停振,停止各路电压。

纵上所述,接通电源后,220V交流电压经整流滤波电路,输出+300V 直流高压。此电压同时加到推挽开关电

路和辅助电源上,因推挽开关电路的开关功率管没有激励脉冲而处于待机状态。辅助电源一经得到工作电压便开始

工作,送出脉宽调制电路、PS-ON控制电路、保护电路的工作电压以及主板的+5VSB待机电压,但因此时没有得到

PS-ON主机的控制信号,PS-ON控制电路输出高电平锁住PWM脉宽调制电路使其不起振,此时电源处于待机状态。

按下面板的开机触发开关,PS-ON控制电路得到控制信号,解除对脉宽调制电路的锁定,PWM电路开始工作,输出

7 / 15

受控的脉宽可变的交流脉冲推动推挽开关电路中的推挽功率管,并时刻根据输出电压的脉动来调整脉冲宽度,以保

证输出电压的稳定。推挽开关电路中,推挽功率管依次开关,产生的脉动交变电压被开关变压器感应到副级,经输

出电路整流滤波,形成主机所需各路电压。保护电路则监视各路输出电压,当发生过压、欠压故障时及时启动,使

PWM电路停止工作,以保证电路及主机的安全。

8 / 15

. 图13.10 ATX电源原理图

13.1.2 TL494、TL431、7805的使用及代换

一、脉宽调制控制电路TL494使用与代换

TL494是一种固定频率脉宽调制电路,它包含了开关电源控制所需的全部功

能,广泛应用于单端正激双管式、半桥式、全桥式开关电源。TL494有SO-16和

PDIP-16两种封装形式,以适应不同场合的要求。其引脚功能如下:1、16脚和2、

15脚分别是误差放大器1和误差放大器2的同相输入端和反向输入端;3脚是

反馈输入端;4脚是死区时间控制端;5、6脚分别接RC振荡器的定时电容和电

阻;7脚接地;8、9脚11、10脚分别是两个内部驱动三极管的集电极和发射

极;12脚为电源正端;13脚为输出状态控制端,当13脚为高电平时,两个内部

驱动三极管交替导通,当13脚为低电平时,两个内部驱动三极管同时导通或截

止,此时只能控制一个开关管。14脚是集成电路内部输出的5V基准电压输出

端。 图13-3 TL494封装图

TL494内部结构及引脚功能请参考图13-4所示。

TL494的代换参考如下:

TL494/KA7500B/BD494/BDL494/S494PA/IR3M02/MB3670/MB3759

/MST894C/TL594/ULN8186/DBL494/ULS8194R/IR9494/UPC494

/UA494/TL494CN

图13-4 TL494内部电路示意图

二、三端可调分流基准源TL431

三端可调分流基准源TL431是T0—92封装如图13-5所示。其性能是输出压连续可调达36V,工作电流范围宽

达0.1。100mA,动态电阻典型值为0.22欧,输出杂波低。图13-5是TL431的典型应用,其中③、②脚两端输出

9 / 15

电压V=2.5(R2十R3)V/R3。如果改变R2的阻值大小,就可以改变输出基准电压大小。其代换原则是431的可以

互换。

图13-5 TL431 封装与应用原理图

三、集成三端稳压器7805的使用与代换

集成三端稳压器根据稳定电压的正、负极性分为78×××,79×××两大系列。附图给出了正、负稳压的典型电

路。

图 13-6 三端稳压器的管脚图

图13-7 正、负稳压的典型电路

10 / 15

78xx系列为负极接公共地的稳压集成电路元件,78xx系列有7805、7806、7809、7812、7815、7818、7824等

等。7824为输出电压24伏、负极接公共地的稳压集成电路,7805为输出电压5伏、负极接公共地的稳压集成电路。

79xx系列为正极接公共地的稳压集成电路元件,79xx系列也有7905、7906、7909、7912、7915、7918、7924等等。

后面的两位数为稳压输出电压。

13.2 ATX电源故障诊断与维修

13.2.1 ATX电源检修的思路与技巧

检修ATX开关电源,从+5VSB、PS-ON和PW-OK信号入手来定位故障区域,是快速检修中行之有效的方法。

一、+5VSB、PS-ON、PW-OK控制信号

ATX开关电源与AT电源最显著的区别是,前者取消了传统的市电开关,依靠+5VSB、PS-ON控制信号的组合

来实现电源的开启和关闭。+5VSB是供主机系统在ATX待机状态时的电源,以及开闭自动管理和远程唤醒通讯联络

相关电路的工作电源,在待机及受控启动状态下,其输出电压均为5V高电平,使用紫色线由ATX插头9脚引出。

PS-ON为主机启闭电源或网络计算机远程唤醒电源的控制信号,不同型号的ATX开关电源,待机时电压值为3V、

3.6V、4.6V各不相同。当按下主机面板的POWER开关或实现网络唤醒远程开机,受控启动后PS-ON由主板的电子

开关接地,使用绿色线从ATX插头14脚输入。PW-OK是供主板检测电源好坏的输出信号,使用灰色线由ATX插头

8脚引出,待机状态为零电平,受控启动电压输出稳定后为5V高电平。

图13-4 ATX插槽图示

脱机带电检测ATX电源,首先测量在待机状态下的PS-ON和PW-OK信号,前者为高电平,后者为低电平,插

头9脚除输出+5VSB外,不输出其它电压。其次是将ATX开关电源人为唤醒,用一根导线把ATX插头14脚PS-ON

信号,与任一地端(3、5、7、13、15、16、17)中的一脚短接,这一步是检测的关键,将ATX电源由待机状态唤

醒为启动受控状态,此时PS-ON信号为低电平,PW-OK、+5VSB信号为高电平,ATX插头+3.3V、±5V、±12V有

输出,开关电源风扇旋转。上述操作亦可作为选购ATX开关电源脱机通电验证的方法。

13.2.2 ATX电源检测方法:

脱机待机下,测试整流后的两个大滤波电容上应有+300V左右的直流电压,ATX14脚(绿线,PS信号)应该有5V,

LM339的13脚(PG)应该为0V,ATX紫色线上应该有+5V,其他各脚为0V。

短接绿、黑线启动电源后,ATX绿线就为0V,PG为5V,同时ATX其他各脚应有正常的电压输出。继续测量7500

或494的第12脚供电脚应12V~20V的直流供电,第13、14、15脚应有从内部输出的5V,第4脚(死区,保护脚)

正常时为0V,第8脚、第11脚应有1.5~2V的驱动电压输出。哪一点电压不对,查其相关电路,即可找出故障元

件。

11 / 15

再补充一些常见故障部位:

1、电源保险断

前级的热敏电阻,整流桥,滤波电容,两个电源管,后备电源部份的电源管,都是首要检查是否短路。

2、上电有300V高压

检查5VSB是否有输出,如有,再检查开关电源控制器4脚电压,如是4V左右,是电源保护了,检查各电压的

取样电阻和LM339,不过经验说来,快速整流管短路引起的保护占多数,输出滤波电容爆浆引起也有。另两个电源

管的控制极上的电阻和二极管也要检查,虽然开关电源管没短路,它们的损坏机率不大,不可忽略,一定要检查一

下。

常见产生保护问题可能出现的部位:

(1) 5V12V快速整流管短路

(2) 其中一个电压的取样电阻烧断或阻值有变化

(3) 输出滤波电容爆浆

(4) 电压输出短路

(5) LM339高低电平输出异常

3、5VSB无输出

(1) 启动电阻(几百K左右大小)烧坏或阻值有变化,这个损坏最多

(2) 电源管开路或短路

(3) 后备电源电源管外围电阻或二极管损坏

(4) 5VSB输出端整流二极管短路

(5) E结所接的小阻值电阻烧断

13.2.3 ATX电源维修经验总结:

在我修过的ATX电源中的故障,一般都是接电后没反映,80%的故障是无 +5V 待机电压,只要将待机电

源的开关管的基极到 +300V之间的启动电阻换掉就可修复,此电阻的阻值一般在500K~600K左右,也可以换

的较大点。

待机电压有了,不开机的原因多是 +12V、+5V、+3.3V的整流管击穿,造成电源保护,也有的是滤波电容

短路坏掉的。

在一些低档的电源中也存在主电源滤波电容鼓起漏电的故障,这时候就会出现烧保险的情况了。。。

检修ATX电源,电源管理IC是重点,下面我就以常见的TL494这种芯片为例,列出该IC各脚的正常工作

电压,以方便大家检修:

在引脚电压12V供电正常情况下,1~16脚的电压依次为:

1: 0V ; 2: 2.4V; 3: 0.06V; 4: 0V ; 5: 1.4V; 6: 3.3V ;

7: 0V; 8: 1.5V; 9: 0V ; 10:0V; 11: 1.5V; 12:12V;

13: 4.9V; 14: 4.9V; 15:4.9V; 16: 0V。

12 / 15

补充:第14脚电压不对,可以断定IC损坏!

而无待机电压,短接PS。ON,照样可以使电源启动。。。

第12脚电压不对,需要查待机电路的输出。。。

13.2.4 ATX电源故障案例诊断与维修

故障诊断

采用ATX电源的计算机系统出了故障,要从CMOS设置、Windows中ACPI的设置及电源和主板等几个方面进行全

面的分析。硬件方面,为了区别故障在负载上还是在电源本身,可以将电源拆卸下来,用一台报废的设备(如硬盘

等)作假负载,以免出现空载保护。在PS-ON信号线(绿色)与地线之间接入一只100~150Ω的电阻,使该信号变

为低电平。如果电源可以工作,说明故障在主板或电源按钮(Power

Button),否则故障在电源自身,只有更换电源自身,只有更换电源了。

根据计算机维修中“先软后硬”的原则,首先要检查BIOS设置是否正确,排除因设置不当造成的假故障;第二

步,检查ATX电源中辅助电源和主电源是否正常;第三步,检查主板电源监控电路是否正常。下面根据故障的不同

表现,分别介绍分析和处理的方法。

【故障一】 无法开机

用万用表测量+5VSB,如果该电压值正常且稳定,而主板反馈信号PS-ON始终为高电平,则可能是主板上的开机

电路损坏,或电源启闭按钮损坏;如果上述两者均为正常而主电源仍无输出,则可能是开关电源主回路损坏,或因

负载存在短路或空载而进入保护状态。

【故障二】 无法关机

关不了主机,有以下几种现象和原因:

① BIOS中设定关机时有一定的延时时间(Delay

Time),关机时需要按住电源按钮,保持数秒钟,才能将机器关闭。不能实现瞬间关闭,是正常现象,不是故

障。

② 电源按钮失灵。这种情况下,不仅不能关机,开机也会有问题。

③ 主板上的电源监控电路故障,PS-ON信号恒为高电平。

④关不了键盘电源(键盘的Num Lock指示灯在主机关闭后是亮的)。有些机器允许使用密码通过键盘开机,键

盘上的Num

Lock灯在关机后仍亮着,是正常现象。

⑤关不了显示器。如果显示卡或显示器中有一个部分不支持DPMS(显示器电源管理系统)规范,在主机关闭后

显示器指示灯亮,屏幕上仍有白色光栅,也属正常现象。

【故障三】 自行开机

自行开机故障有以下两类:

13 / 15

第一类在BIOS设置中将定时开机功能设为“Enabled”,这样机器会在所设定的某个日期的某个时刻,或每天的

某个时刻自动开机。某些机器的BIOS设置项中具有来电自动开机功能设置,如果选择了来电开机,则在插上交流电

源后,机器便会启动。应该说,出现这些问题,并不是真正的故障,而是用户不了解机器所具有的这些功能。

第二类是BIOS中关闭了定时开机和来电自动开机功能,机器只要接通交流电源还会自行开机,这无疑是硬件故

障了。硬件故障有3种原因:第1种是电源本身的抗干扰能力较差,交流电源接通瞬间产生的干扰使其主回路开始

工作;第2种是+5VSB电压低,使主板送不出应有的高电平,而总是为低电平,这样机器不仅会自行开机,还会关不

掉;第3种是来自主板的PS-ON信号质量较差,特别在通电瞬间,该信号由低电平变为高电平的延时过长,直到主

电源准备好了以后,该信号仍未变为高,使ATX电源主回路误导通。

【故障四】 休眠与唤醒功能异常

休眠与唤醒功能异常表现为:不能进入休眠状态,或休眠后不能唤醒。出现这些问题时,首先要检查硬件的连

接(包括休眠开关的连接是否正确,开关是否失灵等)和PS-ON信号的电压值。进入休眠状态时,PS-ON信号应为低

电平(0.8V以下);唤醒后,PS-ON信号应为高电平(2.2V以上)。如果PS-ON信号正常,而休眠和唤醒功能仍不正

常,则为ATX电源故障。

需要提醒读者,进入夏季后,为了预防雷击,对ATX结构的计算机,如果用户长时间不使用,又不想进行远程

控制,建议将交流输入线拔下,以切断交流输入。

【故障五】 零部件异常

有经验的维修人员,在遇到主板、内存、CPU、板卡、硬盘等部件工作异常或损坏故障时,通常要先测量电源电

压。正常的工作电压是电脑可靠工作的基本保证,而很多莫名其妙的故障都是电源惹的祸。

一台机器发生了找不到硬盘的故障,通过对比试验,确信硬盘是好的。判断为主板上的IDE接口损坏,于是找

来老的多功能卡,插在主板的空闲ISA插槽,连上硬盘试验,仍然找不到硬盘。测量电源电压,+12V电压只有10V

左右。在这样低的供电电压下,硬盘达不到额定转速,当然不能工作。换一台ATX电源,故障排除。

14 / 15

15 / 15


本文标签: 电源电路输出