admin管理员组

文章数量:1531426

2024年6月12日发(作者:)

1. 数字媒体的概念:以二进制数的形式存储、处理、传播、获取的信息媒体,

这些媒体包括数字化的文字、图形、图像、声音、视频、化的文字、图形、

图像、声音、视频、动画及其编码和存储、传输、分发、显示的物理媒体。?

.新媒体、多媒体、超媒体、全媒体、融媒体……

2.数字媒体系统

?从数字媒体的策划、制作、传播到用户消费的全过程来看,数字媒体系统是由

媒体机构、媒体产品、媒体技术、媒体内容、媒体网络和媒体终端6个方面构成

的一个数字媒体系统。【数字媒体机构:负责监管媒体产业的政府部门以及从事

数字媒体信息采集、加工、制作和传播的社会组织。如政府、企业等。?2.数字

媒体产品:又称数字媒体服务,向用户提供文化、艺术、商业等各领域的服务产

品。如视频节目、网络游戏、手机报等。

?3.数字媒体技术:指数字媒体信息获取、处理、存储、生成、输出等技术,使

抽象的信息变成可感知、可管理和交互的技术,主要包括存储技术、数字音频处

理技术、数字图像处理技术、数字影视剪辑技术等。?4.数字媒体内容:又称数

字媒体艺术,是指以计算机技术和现代网络技术为基础,将人的理性思维和艺术

的感性思和现代网络技术为基础,将人的理性思维和艺术的感性思维融为一体的

新的艺术形式。?5.数字媒体网络:服务于数字媒体产品的传播。按照依托网络

的不同,主要包数字广播电视网、Internet、移动互联网等网络。?6.数字媒体终

端:数字媒体产品的承载设备,是用户享受数字媒体产品,感受数字媒体内容的

有形载体。如笔记本电脑、智能电视机、手机等。】

3.传统媒体和数字媒体的关系

?传统媒体和数字媒体的核心区别在于媒体传播的渠道是否具有数字化、网络化、

信息化的特征,而不是媒体存在的形式。//传统媒体和数字媒体之间不是替代的

关系,而是相互补充、竞争合作的关系。//数字媒体时代的到来会导致媒体市场

发生本质的变化,不转型、仍然按照原有方式运作的传统媒体必然越来越经营困

难甚至被淘汰。

4.数字媒体时代

“渠道为王”“内容为后”“商务飞妃”////“渠道”就是数字化信息传播方式,“商

务”的实现依托于数字媒体产品,而“内容”就是用户切实感受到数字媒体产品

的表现形式。

5.传媒产业科技新热点

?大传媒时代的传媒产业之“变”?大传媒产业的出现?移动互联上的大传媒平台?

网络与受众环境的变化?多屏融环境合、三网融合与产业融合?传媒企业成长与资

本运营

6.三网融合?2015年8月25日,国务院办公厅印发《三网融合推广方案》

?2015年8月20日,浙江省人民政府办公厅发布《关于加快推进无线宽带网络

建设的实施意见》

7.、传媒产业科技新热点

NGB(下一代广播电视网)?

/以有线数字电视网和移动多媒体广播网络为基础,以高性能宽带信息网核心技

术为支撑,将有线和无线相结合,实现全程全网的广播电视网络。?

来源:网络转载

/NGB要求全程全网、互联互通、可管可控

OTTTV

专网OTTTV、公网OTTTV

?AppleTV、GoogleTV

?中国的可管可控模式,颁发互联网电视7大牌照:CNTV(中央电视台为申请主体)、

杭州华数(浙江、杭州电视台联合申请)、上海文广——百视通(上海电视台为申

请主体)、南方传媒(广东电视台为申请主体)、湖南广电、

中国国际广播电台以及中央人民广播电台。

电视盒子?

小米盒子?乐视盒子?红雷盒子?华为秘盒等

TVOS?智能电视操作系统?

/2014年6月6日,在北京国际电视技术研讨会上,国家广电总局发布了智能电

视操作系统TVOS1.0。TVOS1.0。?

/2015年12月26日,国家新闻出版广电总局发布了TVOS2.0。华为主要承担的

是TVOS2.0的开发工作,阿里主要负责TVOS2.0内置的电视购物商城。?

/具有我国自主知识产权。

与IPTV的区别?

网络:?IPTV电视内容的传播基于电信运营商搭建的专用网络(IP城域网);?

OTTTV的传播是以公共宽带互联网或运营商专网作为基础。

终端:?IPTV的终端为运营商集成STB+普通家庭电视;?

OTTTV的终端为OTT机顶盒+显示屏(电视、电脑、Pad、手机等),

机顶盒甚至可以置于电视机内。

9.3D技术?

3D成像是靠人两眼的视觉差产生的。?

人的两眼(瞳孔)之间一般会有8厘米左右的距离。要让人看到3D影像,就必

须让左眼和右眼看到不同的影像,使两副画面产生一定差距,也就是模拟实际人

眼观看时的情况。?

3D的立体感觉就是如此由来的

人眼通过两眼看到的图像差异感知立体效果,称作双眼立体视觉。

正视差:物体看起来在屏幕后方

负视差:物体看起来在屏幕后面

真3D电影?阿凡达、少年派、美人鱼?

伪3D电影(2D立体转制)泰坦尼克、钢铁侠、画皮2、太极?

3D动画电影?

三维动画软件:熊出没?

2D转制:狮子王、大闹天宫

3D显示技术——红蓝技术?

红蓝3D:通过不同颜色的眼镜过滤不同的颜色而看到不同的影像

3D显示技术——偏振式3D?

利用光线有“振动方向”的原理来分解原始图像的,通过在显示屏幕上加放偏光

板,可以向观看者输送两幅偏振方向不同的3.83D技术两幅画面,当画面经过偏

振眼镜时,由于偏振式眼镜的每只镜片只能接受一个偏振方向的画面,这样人的

左右眼就能接收两组画面,再经过大脑合成立体影像。

3D显示技术——快门式3D?

来源:网络转载

/通过提高画面的快速刷新率(至少要达到120Hz)来实现3D效果,属于主动式

3D技术。/当3D信号输入到显示设备(诸如显示器、投影机等)后,120Hz的

图像便以帧序列的格式实现左右帧交替产生,通过红外发射器将这些帧信号传输

出去;?

/负责接收的3D眼镜刷新同步实现左右眼观看对的图像,并且保持与2D视像相

同的帧数,观众的两只眼睛看到快速切换的不同画面,并且大脑中产生错觉,便

观看到立体影像。

3D显示技术——全息投影?

/全息投影3D是一种利用干涉和衍射原理记录并再现物体真实的三维图像,是一

种无需佩戴眼镜、观众就可以看到立体的虚拟人物的3D技术。?

/3D全息立体投影设备不是利用数码技术实现的,而是投影设备将不同角度摄像

投影至MP全息投影膜上,让你看到不属于你自身角度的其它图像,因而实现了

真正的3D全新立体影像。

1.传声器和扬声器

?把声音信号转换成电信号,或把电信号转换成声音信号的换能器,称为电声器

件。?

2.传声器:一种将声音信号转变为相应的电信号的换能器件,又称话筒或麦克风。

传声器的分类:?

按接收声波原理分:声压式和压差式。?

按能量转换方式分:动圈式、电容式、压电式等。?

按指向性分:无指向性,单指向性,双指向性。?

目前使用最广泛的传声器是动圈式传声器和电容式传声器。?

无线传声器:无线传声器能把换能后的声频电信号调制在一个载波上,经天

线辐射到附近接收点。

3.传声器的指向性特性和特点

?无指向性:?全指向性,传声器在所有方向上的灵敏度相同。?

双指向性:?8字形,传声器在相对的两个方向上有较高的灵敏度,而在与之

垂直的方向上灵敏度为零。?

单指向性:?心形,传声器只在一个主方向上有较高的灵敏度,而在与之相反的

方向上灵敏度接近于零。?

强指向性:?超指向性,传声器在一个很窄的范围内有很高的灵敏度,而在其它

方向上则灵敏度接近于零。

4.?/扬声器:将按声音变化的电信号转换成声信号的换能器件。?

/扬声器有电动式、压电式、舌簧式等。?

/电动式扬声器又可分为纸盆式扬声器、球顶式扬声器和号筒式扬声器。顶

式扬声器和号筒式扬声器。

扬声器箱(音箱)1.敞开式音箱2.封闭式音箱3.倒相式音箱3.倒相式音箱4.组合

音箱

5.立体声(Stereo)的概念

?聆听者借助双耳听觉特性,通过对电声系统重放声场的深度感声系统重放声场

的听觉感受,重新获得关于原声场空间信息的听觉印象

6.立体声的概念

?单声道系统?

来源:网络转载

使用一个声道进行录音和重放的声音。?

特点:声音都来自一个方向或是一个点,听起来贫乏无味。

?双声道立体声系统?

使用两个声道,并且两个声道再录音再放音的过程中是相互独立、不互

相干扰,但两个声道信号又有声学上的关联。?

多声道环绕立体声系统?

在双声道立体声基础上增加了数量不等的环绕声道,构成全景立体声。

7.环绕立体声

?环绕声除了能使节目产生生动的临场感和渲染力以外,还有一个最大的特点是

扩大了听音的范围。

?中间声像的准确定位,加大了有效听音范围。尤其在电视节目制作中,避免了

由于声像偏移造成的声画脱节现象。

环绕声制作硬件要求:监听音箱的摆放;控制台的要求;多声道记录载体;房间

声学条件

8.声道立体环绕声

?*以最佳听音点的正面为轴线摆放中置音箱;?

*左右音箱到最佳听音点的连线与轴线分别形成30度连线与轴线分别形成30

度的夹角;?*左右环绕音箱与轴线的夹角分别为110度左右?

*低音效果音箱的摆放要偏离轴线。

9.拾音技术

(1)强度差(声级差)?X-Y式、M-S式

(2)时间差?

*大间距:A-B式、DECCA树等?

*小间距:ORTF、DIN等?

*人头方法:人工头(仿真头)、真人头拾音等

10.立体声的拾音技术

(1)强度差拾音方式?

X-Y式:两只指向特性完全相同的传声器按一定的角度紧靠排列

M-S式:Middle–Side?

M传声器可以采用任何一种指向性,传声器的轴向指向声源,拾取前

方声源总的声音信号,即声源左右方向的和信号;即声源左右方向的和信号;?

S传声器则必须采用8字形指向性,传声器的轴向指向左边,与M传声

器的轴向垂直,主要拾取的是两边混响成分比例较高的声音信号,即声源左右方

向的差信号。

(2)时间差拾音方式?

是以时间差为主,也有强度差、相位差、音色差的复合拾音方式。?

通常采用两只(或三只)传声器,间距十几厘米到几米,平行或设置一定夹

角,于声源正前方。

*A-B式:两个型号、指向特性完全相同的传声器以一定间距并排摆放。

*STRAUSS组合拾音制式:在每一个声道使用指向特性不同的两只传声器

来获得不同的音色特性以提高声音品质,使音色更加丰满。

*人头拾音制式:在“人头立体声方法”中,除拾取“时间差”、“强度差”

和“相位差”外,加强了“音色差”信息的作用,使立体声信号更加接近

人在自然听音状态下听到的声音。///*录音人在耳道口佩戴两只微型传声

来源:网络转载

器,就同人戴耳塞机一样;*录音时人头不可晃动,否则重放声像就会混

乱;?*录音时不能出噪声,尤其注意不能出现衣服的磨擦声;?*另外,录

音时,录音人应该选择厅堂最好的听音位置录音。

*人工头(仿真头)拾音制式:?

为了逼真的再现人耳听到的声音,人们发明了人工头拾音制式,也

称仿真头拾音制式。

?人工头拾音制式是用木料和塑料制成的假人头形状,直径17-21cm,在

耳道的末端分别装有两只全方向指向特性的传声器,两传声器的输出分

别馈送到立体声的左右通道。

11.音频的数字化

●采样

人耳听觉的频率上限在20kHz,为了保证声音不失真,采样频率应大于

40kHz。?

实际使用的CD标准的采样频率为44.1kHz,这样人耳能够听到的声音频率

成分均可恢复。

由于不同质量的声音其频率覆盖范围不同,在实际应用中,可根据声音类型

和质量要求,选择采样频率。

常用音频采样率:8kHz、11.025kHz、16kHz、22.05kHz、44.1kHz、48kHz、

96kHz

●量化【将采样值离散化,即量化成一个有限个幅度值的集合x(nT)】

量化级数M

量化位数(比特数)n

M=2^n

根据对人类听觉响度感觉测定:?8位量化位数可满足于电话通信的要求;?

16位量化位数可从好的家用立体声中重现理想效果,相当于CD音质。

●编码【音频模拟信号经过采样与量化之后,为把数字化音频存入计算机,需对

其编码,即用二进制数表示每个采样的量化值】

PCM编码:一种最方便简单的编码方法是脉冲编码调制,常称为

PCM(PulseCodeModulation)编码。它是一种未经压缩的数字音频信号,常作为一

种参考信号,以便其他编码方法与之比较,或在此基础上作进一步压缩编码

总结音频数字化的步骤:?采样:时间的离散化?

量化:幅度的离散化?

编码:数值的二值化

12.数字音频音质与数据量

音质基本概念:音质是指声音的质量,与频率的范围成正比;频率范围越宽,音

质越好

影响音质因素:数据的采样频率及量化位数。采样频率越低,量化位数越少,音

质越差

音频数据大小:数字化文件数据量(字节/秒)=采样频率(Hz)?(量化位数(bit)/8)*声

道数

影响数据量因素:数据的采样频率及量化位数。采样频率越高,量化位数越多,

数据越大

13.音频压缩编码技术与标准(67)

?*必要性:音频的压缩和编码对音频的加工、存储和传输有着重要的意义;?

来源:网络转载

*可行性:对数字音频信息的压缩主要是依据音频信息自身的相关性以及

人耳对音频信息的听觉冗余度。?

*根据压缩后的音频能否完全重构出原始声音可以将音频压缩技术分为无

损压缩及有损压缩两大类。?

*音频数据压缩方法很多,不同的压缩技术,其算法的复杂程度、音频质

量、算法压缩效率以及编解码延时等都有很大的不同。

14.数字音频压缩编码标准

MPEG数字音频压缩技术?

MPEG(MovingPictureExpertsGroup,动态图像专家组)是ISO(国际标准

化组织)与IEC(国际电工委员会)于1988年成立的专门针对运动图像和语音压

缩制定国际标准的组织。

MPEG-1、MPEG-2、MPEG-4、MPEG-7及MPEG-21等。

(1) MPEG-1数字音频压缩技术?

在音频压缩标准化方面取得巨大成功的是MPEG-1音频,也是国

际上第一个高保真声音数据压缩的国际标准。?

在MPEG-1中,对音频压缩按复杂程度规定了三种模式,即层Ⅰ、

层Ⅱ(即MUSICAM掩蔽型自适应子带编码和复用,又称MP2),层Ⅲ(又

称MP3)。

?

MPEG-1层Ⅰ应用:VCD中使用的音频压缩,典型码流为每

通道192kbit/s;?

MPEG-1层Ⅱ应用:数字演播室、DAB、DVB等数字节目的制

作、交换、存储、传送,典型码流为每通字节目的制作、交换、存储、传

送,典型码流为每通道128kbit/s;?

MPEG-1层Ⅲ应用:MP3的复杂度显得相对较高,编码不利

于实时,但由于MP3在低码率条件下高水准的声音质量,广泛应用于软解

压及网络广播。典型码流为每通道64kbit/s。

MPEG-1数字音频的参数概述:

?采样频率:32kHz、44.1kHz、48kHz?

MPEG-14音频码率:32-192Kbps单声道、64-384Kbps立体

(2) MPEG-2数字音频压缩技术?

在MPEG-1基础上增加了几个方面内容:?

增加了低采样率和低码率:保持MPEG-1声音的单声道

和立体声的原有采样率的情况下,MPEG-2又增加了3种采样率,

以便提高码率低于64kbit/s时的每个声道的声音质量。?

支持5.1路环绕声:能提供5个全带宽声道(左、右、

中和两个环绕声道),外加一个低频效果增强声道。

支持多达8种语言或解说。?

MPEG-2AAC

MPEG-1和MPEG-2音频参数的比较

(3) MPEG-4数字音频压缩技术?

来源:网络转载

本文标签: 媒体数字声音技术音频