admin管理员组

文章数量:1530251


解决竞态问题的途径是保证对共享资源的互斥访问,所谓互斥访问是指一个执行单元在访问共享资源的时候,其他的执行单元被禁止访问。


访问共享资源的代码区域称为临界区(critical sections),临界区需要以某种互斥机制加以保护。中断屏蔽、原子操作、自旋锁和信号量等是Linux 设备驱动中可采用的互斥途径.


1.中断屏蔽

在单 CPU范围内避免竞态的一种简单方法是在进入临界区之前屏蔽系统的中断。CPU一般都具备屏蔽中断和打开中断的功能,这项功能可以保证正在执行的内核执行路径不被中断处理程序所抢占,防止某些竞态条件的发生。具体而言,中断屏蔽将使得中断与进程之间的并发不再发生,而且,由于Linux 内核的进程调度等操作都依赖中断来实现,内核抢占进程之间的并发也就得以避免了。

中断屏蔽的使用方法为:


local_irq_disable() //屏蔽中断
...
critical section //临界区
...
local_irq_enable() //开中断

由于Linux 系统的异步I/O、进程调度等很多重要操作都依赖于中断,中断对于内核的运行非常重要,在屏蔽中断期间所有的中断都无法得到处理,因此长时间屏蔽中断是很危险的,有可能造成数据丢失甚至系统崩溃。这就要求在屏蔽了中断之后,当前的内核执行路径应当尽快地执行完临界区的代码。

与 local_irq_disable()不同的local_irq_save(flags)除了进行禁止中断的操作以外,还保存目前CPU的中断位信息,local_irq_restore(flags)进行的是与local_irq_save(flags)相反的操作。

如果只是想禁止中断的底半部,应使用local_bh_disable(),使能被local_bh_disable() 禁止的底半部应该调用。local_bh_enable()。


2.原子操作


原子操作指的是在执行过程中不会被别的代码路径所中断的操作。
Linux 内核提供了一系列函数来实现内核中的原子操作,这些函数又分为两类,分别针对位和整型变量进行原子操作。它们的共同点是在任何情况下操作都是原子的,内核代码可以安全地调用它们而不被打断。位和整型变量原子操作都依赖底层CPU的原子操作来实现,因此所有这些函数都与CPU架构密切相关。


3.自旋锁

自旋锁(spin lock)是一种对临界资源进行互斥手访问的典型手段,其名称来源于它的工作方式。为了获得一个自旋锁,在某CPU 上运行的代码需先执行一个原子操作,该操作测试并设置(test-and-set)某个内存变量,由于它是原子操作,所以在该操作完成之前其他执行单元不可能访问这个内存变量。


如果测试结果表明锁已经空闲,则程序获得这个自旋锁并继续执行;如果测试结果表明锁仍被占用,程序将在一个小的循环内重复这个“测试并设置”操作,即进行所谓的“自旋”,通俗地说就是“在原地打转”。当自旋锁的持有者通过重置该变量释放这个自旋锁后,某个等待的“测试并设置”操作向其调用者报告锁已释放。

4.顺序锁

顺序锁(seqlock)是对读写锁的一种优化,若使用顺序锁,读执行单元绝不会被写执行单元阻塞,也就是说,读执行单元可以在写执行单元对被顺序锁保护的共享资源进行写操作时仍然可以继续读,而不必等待写执行单元完成写操作,写执行单元也不需要等待所有读执行单元完成读操作才去进行写操作


5.信号量

信号量(semaphore)是用于保护临界区的一种常用方法,它的使用方式和自旋锁类似。与自旋锁相同,只有得到信号量的进程才能执行临界区代码。但是,与自旋锁不同的是,当获取不到信号量时,进程不会原地打转而是进入休眠等待状态。

定义信号量

struct semaphore sem;

初始化信号量

void sema_init (struct semaphore *sem, int val);

获取信号量

void down(struct semaphore * sem); 

释放信号量

void up(struct semaphore * sem); 

本文标签: 危险区临界CriticalSections